研究業績

論文
[15]
Yokoyama K., Egusa T., Ikka T., Yamashita H., & Imaizumi F. (2023) Effects of Shallow Groundwater on Deep Groundwater Dynamics in a Slow-Moving Landslide Site. International Journal of Erosion Control Engineering, 16(1), 1-12. 
[14]
Leiter M., Neumann M., Egusa T., Harashina K., & Hasenauer H. (2022) Assessing the Resource Potential of Mountainous Forests: A Comparison between Austria and Japan. Forests, 13(6), 891.
[13]
Egusa T., Oda T., Sato T. & Kumagai T. (2021) Estimation of sub-annual inter-catchment groundwater flow using short-term water balance method. Hydrological Processes, 35(9), e14368.
[12] Momiyama H., Kumagai T. & Egusa T. (2021) Model analysis of forest thinning impacts on the water resources during hydrological drought periods. Forest Ecology and Management, 499, 119593.
[11] Oda T., Egusa T., 他5名 (2021) Effects of changes in canopy interception on stream runoff response and recovery following clear-cutting of a Japanese coniferous forest in Fukuroyamasawa Experimental Watershed in Japan. Hydrological Processes, 35(5), e14177.
[10] Fujime N., Kumagai T., Egusa T., Momiyama H. & Uchiyama Y. (2021) Importance of calibration in determining forest stand transpiration using the thermal dissipation method. Agricultural and Forest Meteorology, 301-302, 15, 108356.
[9] Egusa T., Kumagai T., Oda T. & Ohte N. (2021) Effects of bedrock groundwater discharge on spatial variability of dissolved carbon, nitrogen, and phosphorous concentration in stream water within a forest headwater catchment. Hydrological Processes, 35(1), e13993.
[8] Egusa T., Kumagai T. & Shiraishi N. (2020) Carbon stock in Japanese forests has been greatly underestimated. Scientific Reports, 7895.
[7] Egusa T., Kumagai T. Oda T., Gomi T. & Ohte N. (2019) Contrasting patterns in the decrease of spatial variability with increasing catchment area between stream discharge and water chemistry, Water Resources Research, 55, 7419-7435.
[6] Oda T., Imamura N. Egusa T. & Ohte N. (2019) The effects of canopy alteration–induced atmospheric deposition changes on stream chemistry in Japanese cedar forest, Forest Ecology and Management, 448, 85-93.
[5] Momiyama H., Kumagai T. & Egusa T. (2019) Reproducing monthly evapotranspiration from a coniferous plantation watershed in Japan, Journal of Forest Research, 24, 197-200.
[4] Egusa T., Ohte N. Oda T. & Suzuki M. (2016) Quantifying aggregation and change in runoff source in accordance with catchment area increase in a forested headwater catchment, Hydrological Processes, 30, 4125-4138.
[3] Hiraoka M., Gomi T., Oda T., Egusa T. & Uchiyama Y. (2015) Responses of bed load yields from a forested headwater catchment in the eastern Tanzawa Mountains. Japan. Hydrological Research Letters. 9(3), 41-46.
[2] Egusa T., Ohte N. Oda T. & Suzuki M. (2013) Relationship between catchment scale and the spatial variability of stream discharge and chemistry in a catchment with multiple geologies, Hydrological Research Letters, 7(2), 12-17.
[1] Oda T., Suzuki M., Egusa T. & Uchiyama Y. (2012) Effect of bedrock flow on catchment rainfall-runoff characteristics and the water balance in forested catchments in Tanzawa Mountains, Japan, Hydrological Processes, 27(26), 3864-3872.

総説
[2] Yokoyama K., Imaizumi F., & Egusa T. (2022) A Review of Groundwater Observation Methods for Slow-Moving Landslide. International Journal of Erosion Control Engineering, 15(2), 7-21.
[1] 田中智大、渡部哲史、小槻峻司、林義晃、丸谷靖幸、峠嘉哉、山崎大、木村 匡臣、田上雅浩、江草智弘、橋本雅和、仲吉信人 (2018)「最前線の水文・水資源学~WACCA世代の挑戦~」『水文水資源学会誌』、31巻6号、509-540.

その他
[1] 江草智弘 (2019)「はかる 現地観測(2)現地流量観測(その1)河川流量の手動観測について」『砂防学会誌』、72巻4号、40-43.