Publication list


[25] *A. Nakamura, N. Kobayashi, N. Koga, * R. Iino, Positive Charge Introduction on the Surface of Thermostabilized PET Hydrolase Facilitates PET Binding and Degradation ACS Catalysis, DOI:10.1021/acscatal.1c01204

[24] J. Ando, H. Kawagoe, A. Nakamura, R. Iino, *K. Fujita, Label-free monitoring of crystalline chitin hydrolysis by chitinase based on Raman spectroscopy Analyst 146, 4087-4094 (2021)

[23] *A. Nakamura,T. Kanazawa, T. Furuta, M. Sakurai, M. Saloheimo, M. Samejima, A. Koivula, *K. Igarash, Role of Tryptophan 38 in loading substrate chain into the active-site tunnel of cellobiohydrolase I from Trichoderma reesei, Journal of Applied glycoscience, 68 19-29, 2021

[22] Akasit Visootsat,Akihiko Nakamura,Tak-Wai Wang,Ryota Iino, Combined Approach to Engineer a Highly Active Mutant of Processive Chitinase Hydrolyzing Crystalline Chitin,
ACS Omega 5(41) 26807–26816 2020

[21] Taku Uchiyama,Takayuki Uchihashi,Akihiko Nakamura,Hiroki Watanabe,Satoshi Kaneko,Masahiro Samejima,Kiyohiko Igarashi, Convergent evolution of processivity in bacterial and fungal cellulases, Proceedings of the National Academy of Sciences 117(33) 19896-19903 2020

[20] Akihiko Nakamura,Daiki Ishiwata,Akasit Visootsat,Taku Uchiyama,Kenji Mizutani,Satoshi Kaneko,Takeshi Murata,Kiyohiko Igarashi,Ryota Iino, Domain architecture divergence leads to functional divergence in binding and catalytic domains of bacterial and fungal cellobiohydrolases,
Journal of Biological Chemistry,   2020

[19] K. Okazaki,A. Nakamura,R. Iino, Chemical-State-Dependent Free Energy Profile from Single-Molecule Trajectories of Biomolecular Motors: Application to Processive Chitinase
The Journal of Physical Chemistry B 124(30) 6475-6487 2020
[18] J. Ando, T. Shima, R. Kanazawa, R. Shimo-Kon, A. Nakamura, M. Yamamoto, T. Kon & *R. Iino (5番目), Small stepping motion of processive dynein revealed by load-free high-speed single-particle tracking, Scientific Reports, Vol. 10, pp. 1080, 2020
[17] A. Visootsat, A. Nakamura, *R. Iino (3, 2番目), Single-molecule imaging analysis reveals the mechanism of a high-catalytic-activity mutant of chitinase A from Serratia marcescens, Journal of Biological Chemistry, Vol. 295, No. 7, pp. 1915–1925, 2020
[16] J. Ando, A. Nakamura, *R. Iino (3, 2番目), Multicolor High-Speed Tracking of Single Biomolecules with Silver, Gold, and Silver–Gold Alloy Nanoparticles, ACS Photonics, Vol. 6, No. 11, pp. 2870-2883, 2019
[15] J. Ando, A. Nakamura, *R. Iino (4, 2番目), Single-nanoparticle tracking with angstrom localization precision and microsecond time resolution, Biophysical Journal, Vol. 115, No. 12, pp. 2413-2427, 2018
[14] *A. Nakamura, *R. Iino (3, 1番目), Processive chitinase is Brownian monorail operated by fast catalysis after peeling rail from crystalline chitin, Nature Communications, Vol. 9, pp. 3814, 2018
[13] A. Nakamura, *R. Iino (11, 1番目), Rate constants, processivity, and productive binding ratio of chitinase A revealed by single-molecule analysis, Physical Chemistry Chemical Physics, Vol. 20, pp. 3010-3018, 2018 < 裏表紙 >
[12] F. Kawai, A. Nakamura, A. Visootsat, *R. Iino, Plasmid-Based One-Pot Saturation Mutagenesis and Robot-Based Automated Screening for Protein Engineering, ACS Omega, Vol. 3, pp. 7715-7726, 2018
[11] M. Tachioka, A. Nakamura, T. Ishida, K. Igarashi and *M. Samejima, Crystal structure of family 6 cellobiohydrolase from the basidiomycete Phanerochaete chrysosporium, Acta Crystallography section F, Vol. 73, No. 7, pp. 398-403, 2017
[10] M. Tachioka, N. Sugimoto, A. Nakamura, *M. Samejima (4, 2番目), Development of simple random mutagenesis protocol for the protein expression system in Pichia pastoris., Biotechnology and Biofuels, Vol. 9, No. 1, pp. 199, 2016
[9] A. Nakamura, *R. Iino (10, 1番目), Single-molecule imaging analysis of binding, processive movement, and dissociation of cellobiohydrolase Trichoderma reesei Cel6A and its domains on crystalline cellulose, Journal of Biological Chemistry, Vol. 291, No. 43, pp. 22404–22413, 2016  < 表紙 >
[8] A. Nakamura, *K. Igarashi (12, 1番目), “Newton’s cradle” proton relay with amide-imidic acid tautomerization in inverting cellulase visualized by neutron crystallography. Science Advances, Vol. 1, pp. e1500263, 2015
[7] Y. Shibafuji, A. Nakamura, *R. Iino (9, 1番目), Single-molecule imaging analysis of elementary reaction steps of Trichoderma Reeseicellobiohydrolase I (Cel7A) hydrolyzing crystalline cellulose Iα and IIII Journal of Biological Chemistry, Vol. 289, No. 20, pp. 14056-14065, 2014
[6] A. Nakamura, *M. Samejima (6, 1番目), Trade-off between Processivity and Hydrolytic Velocity of Cellobiohydrolases at the Surface of Crystalline Cellulose. Journal of American Chemical Society, Vol. 136, No. 12, pp. 4584-4592, 2014
[5] H. Tsukagoshi, A. Nakamura, *M. Arioka (5, 2番目), The GH26 β-mannanase RsMan26H from a symbiotic protist of the termite Reticulitermes speratus is an endo-processive mannobiohydrolase: Heterologous expression and characterization. Biochemical and biophysical research communications, Vol. 452, pp. 520-525, 2014
[4] H. Tsukagoshi, A. Nakamura, *M. Arioka (8, 2番目), Structural and Biochemical Analyses of Glycoside Hydrolase Family 26 beta-Mannanase from a Symbiotic Protist of the Termite Reticulitermes speratus. Journal of Biological Chemistry, Vol. 289, No. 15, pp. 10843-10852, 2014
[3] A. Nakamura, *M. Samejima (11, 1番目), Phase-diagram-guided method for growth of a large crystal of glycoside hydrolase family 45 inverting cellulase suitable for neutron structural analysis. Journal of Synchrotron Radiation, Vol. 20, No. 6, pp. 859–863, 2013
[2] A. Nakamura, *M. Samejima (6, 1番目), The Tryptophan Residue at the Active Site Tunnel Entrance of Trichoderma reesei Cellobiohydrolase Cel7A Is Important for Initiation of Degradation of Crystalline Cellulose. Journal of Biological Chemistry, Vol 288, No. 19, pp. 13503–13510, 2013
[1] K. Igarashi, M. Maruyama, A. Nakamura, T. Ishida, M. Wada and *M. Samejima, Degradation of Crystalline Celluloses by Phanerochaete chrysosporium Cellobiohydrolase II (Cel6A) Heterologously Expressed in Methylotrophic Yeast Pichia pastoris. Journal of Applied Glycoscience, Vol. 59, No. 3, pp. 105-110, 2012



[12] *中村彰彦,岡崎圭一,古田忠臣,櫻井実,飯野亮太, セラチア菌由来キチン加水分解酵素の運動機構, 応用糖質科学 10(2) 89-95 2020

[11] *A Nakamura,K. Okazaki,T. Furuta,M. Sakurai,J. Ando,R. Iino, Crystalline chitin hydrolase is a burnt-bridge Brownian motor, Biophysics and Physicobiology, 2020

[10] *中村彰彦,岡崎圭一,古田忠臣,櫻井実,飯野亮太, キチン加水分解酵素は熱ゆらぎを利用して1方向に動きながら結晶性バイオマスを分解する, 生物物理 59(6) 330-333 2019

[9] *A. Nakamura, R. Iino, Visualization of functional structure and kinetic dynamics of cellulases, Advances in Experimental Medicine and Biology, Vol. 1104, pp. 201-217, 2018
[8] *R. Iino, T. Iida, A. Nakamura, E. Saita, *H. You, *Y. Sako, Single-molecule imaging and manipulation of biomolecular machines andsystems, BBA – General Subjects, Vol. 1862, No. 2, pp. 241-252, 2018
[7] 立岡美夏子, 中村彰彦, *鮫島正浩 (7, 2番目), 水素原子の可視化を目指したセルラーゼの大型結晶作製, International Journal of Microgravity Science and Application, Vol. 34, No. 1, pp. 340108, 2017
[6] *飯野亮太, 安藤潤, 中村彰彦, 金ナノプローブでタンパク質分子モーターのダイナミックな動きを観る, 分子イメージング, Vol. 11, No. 1, pp. 11-16, 2017
[5] 中村彰彦, *五十嵐圭日子 (5, 1番目), 中性子/X 線結晶構造解析によって明らかとなった反転型セルロース加水分解酵素のプロトン伝達経路を含んだ反応機構, 中性子科学会「波紋」, Vol. 26, No. 3, pp. 139-142, 2016
[4] 中村彰彦, 石田卓也, 日下勝弘, 田中伊知朗, 新村信雄, 鮫島正浩, *五十嵐圭日子, 中性子/X線複合構造解析で酵素触媒反応におけるプロトンリレーを可視化する, 生物物理, Vol. 56, No. 3, pp. 171-173, 2016
[3] A. Nakamura, T. Ishida, M. Samejima, *K. Igarashi, The use of neutron scattering to determine the functional structure of glycoside hydrolase, Current Opinion in Structural Biology, Vol. 40, pp. 54–61, 2016
[2] 中村彰彦, 石田卓也, 鮫島正浩, *五十嵐圭日子, 反転型セルラーゼの巨大結晶作製と中性子/X 線共構造構解析, 日本結晶学会誌, Vol. 57, pp. 59-65, 2015
[1] *飯野亮太, 中村彰彦, 五十嵐圭日子, 鮫島正浩, 1 分子計測からわかるエクソ型セルラーゼの分子機構, 生物物理, Vol 54, No. 6, pp. 318–320, 2014


[2] *中村彰彦 バクテリアと糸状菌でのセルロース分解酵素デザインの違い, Cellulose comunications, 27(4) 118-123 2020

[1] 中村彰彦, 石田卓也, 鮫島正浩, *五十嵐圭日子, 中性子構造解析で明らかになった立体反転型セルラーゼのユニークな活性残基, バイオサイエンスとインダストリー, Vol 74, No. 3, pp. 231-233, 2016