教員紹介

静岡大学理学部数学科には、10名の専任教員が所属し、数学の教育研究活動を行っています。各教員の専門分野と、ひとことメッセージを紹介します。より詳しい研究内容や担当授業等は、教員名からリンクされている教員データベースや個人ホームページをご覧下さい。

代数学研究系

毛利 出 教授
(代数学)

非可換代数曲面の分類。特に非可換スキーム上での交叉理論、量子射影空間・量子線織曲面の研究

非可換代数幾何学は1990年代に始まった極めて新しい数学の分野で、人手が足りません。私の研究を手伝ってくれる学生を募集しています。

木村 杏子 准教授
(代数学)

スタンレー・ライスナーイデアルの研究。 特に算術階数や極小自由分解に関する研究

スタンレー・ライスナー環は、組合せ論と可換環論を結びつけます。その不思議な関係に魅せられます。

解析学研究系

田中 直樹 教授
(実解析学)

無限次元空間における指数関数の構成方法及び自然現象を記述する偏微分方程式の実解析的立場からの研究

一緒に数学の世界を楽しみませんか?

松本 敏隆 教授
(関数解析学)

作用素論的および実解析的手法による偏微分方程式の研究

無限次元空間の舞台で数学を楽しみましょう。

足立 真訓 講師
(複素解析幾何学)

複素解析幾何学。特に、複素多様体内の弱擬凸領域における複素関数論

オイラーの公式「$e^{i\pi} = -1$」を知っていますか。$e$を2乗するならともかく、$i\pi$乗するとはどういうことでしょうか。関数を複素数の世界で解析接続して考えると、そこには奥深い幾何学が現れるのです。

確率・統計学研究系

岡村 和樹 講師
(確率論)

主に確率過程の研究

一見するとでたらめにみえる対象に対してそこに潜む規則性の発見を目指しています。大学で学ぶ確率論は高等学校までの場合の数や確率とは違う面があります。

幾何学研究系

保坂 哲也 准教授
(幾何学、位相幾何学、特に幾何学的群論)

群作用のあるCAT(0)空間の研究。無限コクセター群の研究。CAT(0)空間の境界の位相構造に関する研究

「曲率が0以下の空間」の定式化としてCAT(0)空間が定義されます。群作用のあるCAT(0)空間について、群の代数的な性質とCAT(0)空間およびその境界の幾何的な性質の間の関係に興味があります。また、その中でも特にコクセター群と作用するCAT(0)空間に興味があります。

横山 美佐子 講師
(計算数学および位相幾何学)

情報依存計算量の理論に基づく写像度の計算、曲線の安定形の正確な計算、3次元軌道体の構造の研究

数学は奥が深いに違いないと思い、かつて数学科を受験しました。今考えるに、それは想像以上でありました。

数理論理学研究系

鈴木 信行 教授
(数理論理学)

非古典論理の意味論的研究。特に Kripke 意味論とその拡張による中間述語論理や様相述語論理の研究

大学はおおっぴらに学問してよいところです。みんなで数学をやってパーっと盛り上がろうではありませんか!

依岡 輝幸 准教授
(数理論理学、特に公理的集合論)

無限集合(特に実数直線)上の組合せ論、アレフ1上の様々な構造についての研究、強制法理論

無限集合上の組合せ論の研究をしています。とても魅力ある分野です。