論文 publications

*Google scholar Link, *Research gate Link, *Research map Link

Peer-Reviewed Articles (査読のある論文)

  • 18) Jiménez-Díaz, A., I. Egea-Gonzalez, L. Parro, M. Tasaka, J. Ruiz (2020), The thermal structure and mechanical behavior of the Martian lithosphere, ICARUS, 106, R2. Link
  • 17) Wallis, D., L.N. Hansen, M. Tasaka, K.M. Kumamoto, A. J. Parsons, G. E. Lloyd, D.L. Kohlstedt, A. J. Wilkinson (2019), The impact of water on slip system activity in olivine and the formation of bimodal crystallographic preferred orientations, , Earth and Planetary Science Letters, 508, 51-61. Link
  • 16) Pommier, A., D. L. Kohlstedt, L. N. Hansen, S. Mackwell, M. Tasaka, F. Heidelbach, K. Leinenweber (2018), Transport properties of olivine grain boundaries from electrical conductivity experiments, Contributions to Mineralogy and Petrology, 173:41, https://doi.org/10.1007/s00410-018-1468-z. Link
  • 15) Tasaka, M., M. E. Zimmerman, D. L. Kohlstedt, H. Stunitz, and R. Heilbronner (2017), Rheological weakening of olivine + orthopyroxene aggregates due to phase mixing, Part2: Microstructural development, Journal of Geophysical Research- Solid Earth, 122, DOI: 10.1002/2017JB014311.Link AGU Research Spotlight web
  • 14) Tasaka, M., M. E. Zimmerman, and D. L. Kohlstedt (2017), Rheological weakening of olivine + orthopyroxene aggregates due to phase mixing, Part1: Mechanical behavior, Journal of Geophysical Research- Solid Earth, 122, DOI: 10.1002/2017JB014333. Link AGU Research Spotlight web
  • 13) Tielke, J. A., L. N. Hansen, M. Tasaka, C. Meyers, M. E. Zimmerman, and D. L. Kohlstedt (2016), Observations of grain-size sensitive power-law creep of olivine aggregates over a large range of lattice-preferred orientation strength, Journal of Geophysical Research- Solid Earth, 121, 2, 506–516, DOI:10.1002/2015JB012302. Link
  • 12) Tasaka, M., M. E. Zimmerman, and D. L. Kohlstedt (2016), Evolution of the rheological and microstructural properties of olivine aggregates during dislocation creep under hydrous conditions, Journal of Geophysical Research- Solid Earth, 121, 1, 92–113, DOI:10.1002/2015JB012134. Link
  • 11) Tasaka, M., M. E. Zimmerman, and D. L. Kohlstedt (2015), Creep behavior of Fe-bearing olivine under hydrous conditions, Journal of Geophysical Research- Solid Earth, 120, 9, 6039–6057, DOI:10.1002/2015JB012096. Link
  • 10) Pommier, A., K. Leinenweber, and M. Tasaka (2015), Experimental Investigation of the electrical behavior of olivine during partial melting under pressure and application to the Lunar mantle, Earth and Planetary Science Letters, 242-255, DOI: 10.1016/j.epsl.2015.05.052. Link
  • 9) Tasaka, M., T. Hiraga, and K. Michibayashi (2014), Influence of mineral fraction on the rheological properties of forsterite + enstatite during grain size sensitive creep 3: Application of grain growth and flow laws on peridotite ultramylonite, Journal of Geophysical Research- Solid Earth, 119, 840-857, DOI:10.1002/2013JB010619. Link
  • 8) Nishihara, Y., T. Ohuchi, T. Kawazoe, D. Spengler, M. Tasaka, T. Kikegawa, A. Suzuki, and E. Ohtani (2014), Rheology of fine-grained forsterite aggregate at deep upper mantle conditions, Journal of Geophysical Research- Solid Earth, 119, 253-273, DOI:10.1002/2013JB010473. Link
  • 7) Tasaka, M., T. Hiraga, and M. Zimmerman (2013), Influence of mineral fraction on the rheological properties of forsterite + enstatite during grain size sensitive creep 2: Deformation experiments, Journal of Geophysical Research- Solid Earth, 118, 3991-4012, DOI:10.1002/jgrb.50284. Link
  • 6) Tasaka, M., and T. Hiraga (2013), Influence of mineral fraction on the rheological properties of forsterite + enstatite during grain size sensitive creep 1: Grain size and grain growth laws, Journal of Geophysical Research- Solid Earth, 118, 3970-3990, DOI:10.1002/jgrb.50285. Link
  • 5) Hiraga, T., T. Miyazaki, M. Tasaka, and H. Yoshida (2010), Mantle superplasticity and its self-made demise, Nature, DOI:10.1038/nature09685. Link
  • 4) Koizumi, S., T. Hiraga, C. Tachibana, M. Tasaka, T. Miyazaki, T. Kobayashi, A. Takamasa, N. Ohashi, and S. Sano (2010), Synthesis of highly dense and fine-grained aggregates of mantle composites by vacuum sintering of mineral nano-powders, Physics and Chemistry of Minerals, 37, 505-518, DOI:10.1007/s00269-009-0350-y. Link
  • 3) Michibayashi, K., Y. Ohara, R. J. Stern, P. Fryer, J. Kimura, M. Tasaka, Y. Harigane, and T. Ishii (2009), Peridotites from a ductile shear zone within backarc lithospheric mantle, southern Mariana Trench: results of a Shinkai6500 dive, Geochemistry Geophysics Geosystems, 10, Q05X06, DOI:10.1029/2008GC002197. Link
  • 2) Tasaka, M., K. Michibayashi, and D. Mainprice (2008), B-type olivine fabrics developed in the fore-arc side of the mantle wedge along a subducting slab, Earth and Planetary Science Letters, 272, 747-757, DOI:10.1016/j.epsl.2008.06.014. Link
  • 1) Michibayashi, K., M. Tasaka, Y. Ohara, T. Ishii, A. Okamoto, and P. Fryer (2007), Variable microstructure of peridotite samples from the southern Mariana Trench: evidence of a complex tectonic evolution, Tectonophysics, 444, 111-118, DOI:10.1016/j.tecto.2007.08.010. Link

Non-Reviewed Articles (査読のない論文)

  • 4) 田阪 美樹 (2020), 実験・天然から探るマントル流動, 島根県地学会, 35.
  • 3) 田阪 美樹 (2011), 東京大学地震研究所の紹介:地球科学とセラミックスの意外な関係, セラミックス, 46, 7, 592-593.
  • 2) 田阪 美樹, 道林 克禎 (2008), マントルウェッジ前弧側由来かんらん岩の微細構造と地震波異方性, 地球,30,71-77.
  • 1) 道林 克禎, 田阪 美樹, 小原 泰彦, 石井 輝秋 (2007), 南部マリアナ海溝かんらん岩の微細構造解析とその意義, 地球,29, 628-634.