研究業績

《英文論文》

  1. Most Naoshia Tasnin, Kisara Ito, Haruko Katsuta, Tsuneyuki Takuma, Tasnuva Sharmin, and Takashi Ushimaru* (2021) The PI3 kinase complex II–PI3P–Vps27 axis on vacuolar membranes is critical for microautophagy induction and nutrient stress adaptation. J Mol Biol. in press.
  2. Tasnuva Sharmin, Shamsul Morshed, Most Naoshia Tasnin, Tsuneyuki Takuma, and Takashi Ushimaru* (2021) Cdc14 phosphatase downmodulates ESCRT-0 complex formation on vacuolar membranes and microautophagy after TORC1 inactivation. Biochem Biophys Res Commun. 2021 Jul 5; 561:158-164. doi: 10.1016/j.bbrc.2021.05.021. Epub 2021 May 21.
  3. Tasnuva Sharmin, Tsuneyuki Takuma, Shamsul Morshed, and Takashi Ushimaru* (2021) Sorting nexin Mdm1/SNX14 regulates nucleolar dynamics at the NVJ after TORC1 inactivation. Biochem Biophys Res Commun. 2021 Mar 16;552:1-8. doi: 10.1016/j.bbrc.2021.03.033. Epub 2021 Mar 16.
  4. Most Naoshia Tasnin, Tsuneyuki Takuma, Tasnuva Sharmin, Shamsul Morshed, and Takashi Ushimaru* (2021) The vacuole controls nucleolar dynamics and micronucleophagy via the NVJ. Biochem Biophys Res Commun. 2021 Apr 23; 550:158-165. doi: 10.1016/j.bbrc.2021.02.141. Epub 2021 Mar 9.
  5. Golam Mostofa, Shamsul Morshed, Satoru Mase, Shun Hosoyamada, Takehiko Kobayashi, and Takashi Ushimaru* (2021) Cdc14 protein phosphatase and topoisomerase II mediate rDNA dynamics and nucleophagic degradation of nucleolar proteins after TORC1 inactivation. Cell Signal. 79, 109884. 2021 Mar;79:109884. doi: 10.1016/j.cellsig.2020.109884. Epub 2020 Dec 13. PMID: 33321182
  6. Shamsul Morshed, Most Naoshia Tasnin, and Takashi Ushimaru* (2020) ESCRT machinery plays a role in microautophagy in yeast. BMC Mol Cell Biol. 21: 70. 2020 Oct 7;21(1):70. doi: 10.1186/s12860-020-00314-w. PMID: 33028189.
  7. Shamsul Morshed, Tsukasa Shibata, Kayoko Naito, Kazumi Miyasato, Yuri Takeichi, Tsuneyuki Takuma, Most Naoshia Tasnin, and Takashi Ushimaru* (2020) TORC1 regulates G1/S transition and cell proliferation via the E2F homologs MBF and SBF in yeast. Biochem Biophys Res Commun. 2020 Aug 27;529(3):846-853. doi: 10.1016/j.bbrc.2020.05.122. Epub 2020 Jun 15. PMID: 32553629
  8. Tasnuva Sharmin, Shamsul Morshed and Takashi Ushimaru* (2020) PP2A promotes ESCRT-0 complex formation on vacuolar membranes and microautophagy induction after TORC1 inactivation. Biochem Biophys Res Commun. 2020 Apr 9;524(3):614-620. doi: 10.1016/j.bbrc.2020.01.129. Epub 2020 Feb 4. PMID: 32029270
  9. Katsue Daicho, Naoki Koike, René Georg Ott, Günther Daum, and Takashi Ushimaru* (2020) TORC1 ensures membrane trafficking of Tat2 tryptophan permease via a novel transcriptional activator Vhr2 in budding yeast. Cell Signal. 2020 Jan 15; 68:109542. doi: 10.1016/j.cellsig.2020.109542. PMID: 31954176
  10. Shamsul Morshed, Tasnuva Sharmin, Takashi Ushimaru* (2020) TORC1 regulates ESCRT-0 complex formation on the vacuolar membrane and microautophagy induction in yeast. Biochem Biophys Res Commun. 2020 Jan 29;522(1):88-94. doi: 10.1016/j.bbrc.2019.11.064. PMID:31740006
  11. Shamsul Morshed, Takahiro Mochida, Ritsu Shibata, Kisara Ito, Md. Golam Mostofa, Muhammad Arifur Rahman, and Takashi Ushimaru* (2019) Def1 mediates the degradation of excess nucleolar protein Nop1 in budding yeast. Biochem Biophys Res Commun. 2019 Nov 5;519(2):302-308. doi: 10.1016/j.bbrc.2019.09.002. Epub 2019 Sep 7. PMID:31506176
  12. Golam Mostofa, Shamsul Morshed, Ritsu Shibata, Yuri Takeichi, Muhammad Arifur Rahman, Shun Hosoyamada, Takehiko Kobayashi, and Takashi Ushimaru* (2019) rDNA condensation promotes rDNA separation from nucleolar proteins degraded for nucleophagy after TORC1 inactivation. Cell Rep. 2019 Sep 24;28(13):3423-3434.e2. doi: 10.1016/j.celrep.2019.08.059. PMID: 31553911.
  13. Sayuri Ueda, Ryota Ozaki, Atsuki Kaneko, Ryoma Akizuki, Haruko Katsuta, Atsuhiro Miura, Akira Matsuura, and Takashi Ushimaru* (2019) TORC1, Tel1/Mec1, and Mpk1 regulate autophagy induction after DNA damage in budding yeast. Cell Signal. 2019 Jun 12;62:109344. doi: 10.1016/j.cellsig.2019.109344. [Epub ahead of print]. PMID: 31201849
  14. Kazuki Suda, Atsuki Kaneko, Mitsugu Shimobayashi, Akio Nakashima, Tatsuya Maeda, Michael N Hall, Takashi Ushimaru* (2019) TORC1 regulates autophagy induction in response to proteotoxic stress in yeast and human cells.Biochem Biophys Res Commun. 2019 Apr 2; 511(2):434-439. doi: 10.1016/j.bbrc.2019.02.077. Epub 2019 Feb 21. PMID: 30797551
  15. Ikuko Miyamoto, Ryota Ozaki, Kazuyuki Yamaguchi, Kaori Yamamoto, Atsuki Kaneko and Takashi Ushimaru* (2019) TORC1 regulates the DNA damage checkpoint via checkpoint protein levels. Biochem Biophys Res Commun. 2019 Mar 19;510(4):629-635. doi: 10.1016/j.bbrc.2019.02.010. Epub 2019 Feb 8. PMID:30745106
  16. Masayoshi Nagai, Atsuko Shibata and Takashi Ushimaru* (2018) Cdh1 degradation is mediated by APC/C–Cdh1 and SCF–Cdc4 in budding yeast. Biochem Biophys Res Commun. 2018 Dec 2;506(4):932-938. doi: 10.1016/j.bbrc.2018.10.179. Epub 2018 Nov 2. PMID: 30396569
  17. Kaori Yamamoto, Nishiho Makino, Masayoshi Nagai, Hiroyuki Araki, and Takashi Ushimaru* (2018) CDK phosphorylation regulates Mcm3 degradation in budding yeast. Biochem Biophys Res Commun. 2018 Nov 30;506(3):680-684. doi: 10.1016/j.bbrc.2018.10.149. Epub 2018 Oct 28. PMID: 30376991
  18. Kaori Yamamoto, Nishiho Makino, Masayoshi Nagai, Yoshimi Honma, Hiroyuki Araki, and Takashi Ushimaru*(2018) TORC1 signaling regulates DNA replication via DNA replication protein levels. Biochem Biophys Res Commun. 10 November 2018, 505 (4) 1128-1133, doi: 10.1016/j.bbrc.2018.10.018. Epub 2018 Oct 11. PMID: 30316513
  19. Muhammad Arifur Rahman, Mashu Terasawa, Md. Golam Mostofa, and Takashi Ushimaru* (2018) The TORC1–Nem1/Spo7–Pah1/lipin axis regulates microautophagy induction in budding yeast. Biochem Biophys Res Commun.2018 Oct 2;504(2):505-512. doi: 10.1016/j.bbrc.2018.09.011. Epub 2018 Sep 7. PMID: 30201264
  20. Golam Mostofa, Muhammad Arifur Rahman, Naoki Koike, Akter MST Yeasmin, Nafisa Islam, Talukdar Muhammad Waliullah, Shun Hosoyamada, Mitsugu Shimobayashi, Takehiko Kobayashi, Michael N. Hall and Takashi Ushimaru* (2018) CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy. J. Cell Biol. Aug 6; 217 (8): 2675-2690. 2018 Jun 29. pii: jcb.201706164. doi: 10.1083/jcb.201706164. [Epub ahead of print] PMID:29959231
  21. Akihiro Kondo, Md. Golam Mostofa, Katsuya Miyake, Mashu Terasawa, Nafisa Islam, Akter MST Yeasmin, Talukdar Muhammad Waliullah, Tomotake Kanki, and Takashi Ushimaru* (2018) Cdc14 phosphatase promotes TORC1-regulated autophagy in yeast. J Mol Biol 2018 May 25;430(11):1671-1684. doi: 10.1016/j.jmb.2018.04.007. Epub 2018 Apr 22. PMID: 29694832
  22. Muhammad Arifur Rahman, Md. Golam Mostofa, and Takashi Ushimaru* (2018) The Nem1/Spo7–Pah1/lipin axis is required for autophagy induction after TORC1 inactivation. FEBS J 2018 May;285(10):1840-1860. doi: 10.1111/febs.14448. Epub 2018 Apr 16. PMID: 29604183
  23. Naoki Koike, Yuuki Hatano and Takashi Ushimaru* (2018) Heat shock transcriptional factor mediates mitochondrial unfolded protein response. Curr Genet 2018 Aug;64(4):907-917. doi: 10.1007/s00294-018-0809-9. Epub 2018 Feb 8. PMID:29423676
  24. Talukdar Muhammad Waliullah, Akter MST Yeasmin, Atsuki Kaneko, Naoki Koike, Mashu Terasawa, Takaya Totsuka and Takashi Ushimaru* (2017) Rim15 and Sch9 kinases are involved in induction of autophagic degradation of ribosomes in budding yeast. Biosci Biotechnol Biochem. 2017 Feb;81(2):307-310. doi: 10.1080/09168451.2016.1234928. PMID: 27659307, 2016 Sep 23:1-4. [Epub ahead of print]
  25. Akter MST Yeasmin, Talukdar Muhammad Waliullah, Akihiro Kondo, Atsuki Kaneko, Naoki Koike and Takashi Ushimaru* (2016) Orchestrated action of PP2A antagonizes Atg13 phosphorylation and promotes autophagy after the inactivation of TORC1. PLOS ONE. 2016 Dec 14;11(12):e0166636. doi: 10.1371/journal.pone.0166636. PMID: 27973551
  26. Yuhki Hatano, Naoki Koike, Asuka Suzuki, and Takashi Ushimaru* (2016) Positive feedback promotes mitotic exit via the APC/C-Cdh1-separase-Cdc14 axis in budding yeast. Cell Signal. 2016 Jul 11;28(10):1545-1554. doi: 10.1016/j.cellsig.2016.07.005. PMID: 27418100
  27. Yoshihito Shimizu, Masayoshi Nagai, Akter MST Yeasmin, Naoki Koike, Muhammad Waliullah Talukdar and Takashi Ushimaru* (2016) Elucidation of novel budding yeast separase mutants. Biosci Biotechnol Biochem. 2016 Mar 80(3):473-478. doi: 10.1080/09168451.2015.1101337. Epub 2015 Nov 2. PMID: 26523765
  28. Akter MST Yeasmin, Talukdar Muhammad Waliullah, Akihiro Kondo, Takashi Ushimaru* (2015) Yvh1 protein phosphatase is required for pre-autophagosomal structure formation after TORC1 inactivation. Biosci Biotechnol Biochem. (2015) 2015 June; 79(12):2022-5 PMID: 26125457.
  29. Kentaro Maegawa, Rumi Takii, Takashi, Ushimaru and Akiko Kozaki (2015) Evolutionary conservation of TORC1 components, TOR, Raptor, and LST8, between rice and yeast. Mol Genet Genomics. 2015 Oct; 290(5):2019-30 PMID: 25956502
  30. Masayoshi Nagai, and Takashi Ushimaru* (2014) Cdh1 is an antagonist of the spindle assembly checkpoint. Cell Signal 2014 Oct; 26(10):2217-2222. doi: 10.1016/j.cellsig.2014.07.007. PMID:25025567
  31. Shigeru Nakaya, Hajime Kobori, Atsushi Sekiya, Hirokazu Kawagishi, and Takashi Ushimaru* (2014) Anti-aging and anti-microbial effects of melleolide on different types of yeast. Biotechnol. Biochem. 2014;78(3):455-7. doi: 10.1080/09168451.2014.885826. Epub 2014 May 15. PMID: 25036832
  32. Shigeru Nakaya, Saki Mizuno, Hiroki Ishigami, Yasuhiro Yamakawa, Hirokazu Kawagishi and Takashi Ushimaru* (2012) A new rapid screening system for anti-aging compounds using budding yeast and identification of beauveriolide I as a potent active compound. Biotechnol. Biochem. 76(6):1226-1228
  33. Kazuhiro Toda, Kayoko Naito, Satoru Mase, Masaru Ueno, Masahiro Uritani, Ayumu Yamamoto and Takashi Ushimaru* (2012) APC/C-Cdh1-dependent anaphase and telophase progression during mitotic slippage. Cell Div.7(1):4 (9 February 2012)
  34. Toshiyuki Hagiwara, Takashi Ushimaru, Kei-ichi Tainaka, Hironori Kurachi and Jin Yoshimura (2011) Apoptosis at Inflection Point in Liquid Culture of Budding Yeasts. PLOS ONE 6 (4) e19224 (1-7).
  35. Katsue Daicho, Nishiho Makino, Toshiki Hiraki, Masaru Ueno, Masahiro Uritani, Fumiyoshi Abe, and Takashi Ushimaru* (2009) Sorting defects of the tryptophan permease Tat2 in an erg2 yeast mutant. FEMS Microbiol Lett.298(2):218-27.
  36. Maria C. Rubio, Manuel Becana, Sumio Kanematsu, Takashi Ushimaru and Euan K. James (2009) Immunolocalization of antioxidant enzymes in high-pressure frozen root and stem nodules of Sesbania rostrata. New Phytol. 183(2):395-407.
  37. Aktar Uzzaman Chouduri, Toshinobu Tokumoto, Hideo Dohra, Takashi Ushimaru and Shinpei Yamada (2008) Functional and biochemical characterization of the 20S proteasome in a yeast temperature-sensitive mutant, rpt6-1. BMC Biochem. Jul 21;9(1):20.
  38. Katsue Daicho, Hironori Maruyama, Asuka Suzuki, Masaru Ueno, Masahiro Uritani and Takashi Ushimaru* (2007) The ergosterol biosynthesis inhibitor zaragozic acid promotes vacuolar degradation of the tryptophan permease Tat2p in yeast. Biochim Biophys Acta.- Biomembranes 2007 Jul;1768(7):1681-1690.
  39. Masahiro Uritani, Hidetoshi Hidaka, Yukari Hotta, Masaru Ueno, Takashi Ushimaru and Takashi Toda (2006) Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase. Genes Cell 2006 Dec;11(12):1367-1379.
  40. Takashi Ushimaru*, Tomofumi Nakagawa, Yuko Fujioka, Katsue Daicho, Makiko Naito, Yuzo Yamauchi, Hideko Nonaka, Katsumi Amako, Kazuki Yamawaki and Norio Murata (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. Plant Physiol. Nov 1; 163(11): 1179-1184.
  41. Yoshimi Honma, Aiko Kitamura, Ryo Shioda, Hironori Maruyama, Kanako Ozaki, Yoko Oda, Thierry Mini, Paul Jenö, Yasushi Maki, Kazuhito Yonezawa, Ed Hurt, Masaru Ueno, Masahiro Uritani, Michael N. Hall, and Takashi Ushimaru* (2006) TOR regulates late steps of ribosome maturation in the nucleoplasm via Nog1 in response to nutrients. EMBO J. 2006 Aug 23;25(16):3832-3842
  42. Kei-ichi Tainaka, Jin Yoshimura, and Takashi Ushimaru (2006) Stage-Dependent Density Effect in the Cell Cycle of Budding Yeast. Theor. Biol. 2006 Oct 7;242(3):736-742
  43. Katsumi Amako, Takashi Ushimaru, Ayami Ishikawa, Chiaki Iwamoto, Yasuka Ogishi, Ritsuko Kishimoto and Kiyoshi Goda (2006) Heterologous Expression of Dehydroascorbate Reductase from Rice and Its Application to Determination of Dehydroascorbate Concentrations. J Nutr Sci Vitaminol (Tokyo). 2006 Apr;52(2):89-95.
  44. Akio Nakashima, Takahiro Hasegawa, Saori Mori, Masaru Ueno, Shigeyasu Tanaka, Takashi Ushimaru, Shusei Sato, and Masahiro Uritani (2006) A starvation-specific serine protease gene, isp6+, is involved in both autophagy and sexual development in Schizosaccharomyces pombe. Curr Genet. Jun;49(6):403-413. doi: 10.1007/s00294-006-0067-0
  45. Kazunori Tomita, Tatsuya Kibe, Ho-Young Kang, Yeon-Soo Seo, Masahiro Uritani, Takashi Ushimaru, and Masaru Ueno (2004) Fission Yeast Dna2 Is Required for Generation of the Telomeric Single-Strand Overhang. Mol Cell Biol.2004 Nov; 24(21):9557-9567
  46. Kazunori Tomita, Masahiro Uritani, Takashi Ushimaru, Koichi Yoshinaga and Masaru Ueno (2004) Sequence-specific binding of the Schizosaccharomyces pombe His1 protein to fission yeast telomeric DNA. Chemistry & BiodiversitySept; 1(9): 1344-1353.
  47. Masaru Ueno, Tadashi Murase, Tatsuya Kibe, Noriyuki Ohashi, Kazunori Tomita, Yota Murakami, Masahiro Uritani, Takashi Ushimaru, Masahiko Harata (2004) Fission yeast Arp6 is required for telomere silenging but functions independently of Swi6. Nucleic Acids Res. 32(2): 736-741.
  48. Kazunori Tomita, Akira Matsuura, Thomas Caspari, Antony M. Carr, Yufuko Akamatsu, Hiroshi Iwasaki, Ken-ichi Mizuno, Kunihiro Ohta, Masahiro Uritani, Takashi Ushimaru, Koichi Yoshinaga, and Masaru Ueno (2003) Competition between the Rad50 complex and the Ku heterodimer reveals a role for Exo1 in processing double-strand break, but not telomeres. Mol Cell Biol. 23 (15), 5186-5197.
  49. Yuuki Ono, Kazunori Tomita, Akira Matsuura, Takuro Nakagawa, Hisao Masukata, Masahiro Uritani, Takashi Ushimaru, and Masaru Ueno (2003) A novel allele of fission yeast rad11 that causes defects in DNA repair and telomere length regulation. Nucleic Acids Res. 31(24): 7141-7149.
  50. Tatsuya Kibe, Kazunori Tomita, Akira Matsuura, Daisuke Izawa, Tsutomu Kodaira, Takashi Ushimaru, Masahiro Uritani and Masaru Ueno (2003) Fission yeast Rhp51 is required for the maintenance of telomere structure in the absence of the Ku heterodimer Nucleic Acids Res. 31(17):5054-5063.
  51. Takashi Ushimaru*, Takahiro Hasegawa, Toyoki Amano, Masao Katayama, Shigeyasu Tanaka, and Hideo Tsuji (2003) Chloroplasts in seeds and dark-grown seedlings of lotus. Plant Physiol., 160 (3), 321-324.
  52. Akio Nakashima, Masaru Ueno, Takashi Ushimaru, and Masahiro Uritani (2002) Involvement of a CCAAT-binding complex in the expression of a nitrogen-starvation-specific gene, isp6+, in Schizosaccharomyces pombe. Biotechnol. Biochem., 66 (10), 2224-2227.
  53. Tomohusa Tachibana, Shiho Atsumi, Ryo Shioda, Masaru Ueno, Masahiro Uritani and Takashi Ushimaru* (2002) A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae. Biol. Chem., 277(25): 22140-22146
  54. Akio Nakashima, Mayumi Yoshida, Kazutoshi Nakayama, Aya Kato-Furuno, Masaru Ueno, Takashi Ushimaru and Masahiro Uritani (2002) Genes for a nuclease and a protease are involved in the drastic decrease in cellular RNA amount in fission yeast cells during nitrogen starvation. J Biochem (Tokyo). 131(3): 391-398.
  55. Takashi Ushimaru*, Yoshitaka Nishiyama, Hidenori Hayashi and Norio Murata (2002) No coordinated transcriptional regulation of the sodkat antioxidative system in Synechocystis PCC 6803. J Plant Physiol, 159, 805-807
  56. Jose L. Crespo, Katsue Daicho, Takashi Ushimaru and Michael N. Hall (2001) The GATA-transcriptional factors GLN3 and GAT1 connect TOR to salt stress in yeast. Biol. Chem. 276(37): 34441-34444.
  57. Miho Kawai, Akio Nakashima, Masaru Ueno, Takashi Ushimaru, Kazuhiro Aiba, Hirofumi Doi and Masahiro Uritani (2001) Fission yeast tor1 functions in response to various stresses including nitrogen starvation, high concentrations of salts and high temperature. Genet. 39(3): 166-174
  58. Masaru Ueno, Rumi Kurokawa, Hubert Renauld, Kousuke Watanabe, Takashi Ushimaru, Masahiro Uritani, Koichi Yoshinaga and Yasushi Hiraoka (2001) Shizosacchromyces pombe taf1+ is required for nitrogen starvation-induced sexual development and for entering the dormant G0 state. Genet. 38: (6) 307-313
  59. Takashi Ushimaru*, Sumio Kanematsu, Masao Katayama and Hideo Tsuji (2001) Antioxidative enzymes in seedlings of Nelumbo nucifera germinated under water. Plant 112(1):39-46
  60. Satomi Kanazawa, Satoshi Sano, Tomokazu Koshiba, and Takashi Ushimaru* (2000) Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence. Plant. 109 (2) : 211-216.
  61. Hiroko Oidaira, Satoshi Sano, Tomokazu Koshiba and Takashi Ushimaru* (2000) Enhancement of antioxidative enzyme activities in chilled rice seedlings. Plant Physiol. 156: 811-813.
  62. Jun’ichi Urano, Tomofumi Nakagawa, Yasushi Maki, Takehiro Masumura, Kunisuke Tanaka, Norio Murata and Takashi Ushimaru* (2000) Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Lett. 466(1):107-111. doi: 10.1016/s0014-5793(99)01768-8.
  63. Takashi Ushimaru*, Sumio Kanematsu, Mineo Shibasaka and Hideo Tsuji (1999) Effect of hypoxia on the antioxidative enzymes in aerobically grown rice (Oryza sativa) seedlings. Plant. 107: 181-187.
  64. Junichi Mano, Takashi Ushimaru and Kozi Asada (1997) Ascorbate in thylakoid lumen as an endogenous electron donor to photosystem II: protection of thylakoids from photoinhitibion and regeneration of ascorbate in stroma by dehydroascorbate reductase. Res. 53: 197-204.
  65. Takashi Ushimaru*, Yasushi Maki, Satoshi Sano, Tomokazu Koshiba, Kozi Asada and Hideo Tsuji (1997) Induction of enzymes involved in ascorbate-dependent antioxidative system, namely, ascorbate peroxidase, monodehydroascorbate reductase and dehydroascorbate reductase, after exposure of rice (Oryza sativa) seedlings germinated under water to air. Plant Cell Physiol. 38: 541-549
  66. Yoshihiro Kato, Jun’ichi Urano, Yasushi Maki and Takashi Ushimaru* (1997) Purification and Characterization of Dehydroascorbate Reductase from Rice. Plant Cell Physiol. 38: 173-178
  67. Takashi Ushimaru*, Kenichi Ogawa, Norihiro Ishida, Mineo Shibasaka, Sumio Kanematsu, Kozi Asada, Hideo Tsuji (1995) Changes in organelle superoxide dismutase isozymes during air adaptation of submerged rice seedlings: Differential behavier of isozymes in plastids and mitochondria. Planta 196(3): 606-613.
  68. Shigeto Morita, Masao Tasaka, Hisao Fujisawa, Takashi Ushimaru, Hideo Tsuji (1994) A cDNA clone encoding a rice catalase isozyme. Plant Physiol. 105(3): 1015-1016.
  69. Takashi Ushimaru*, Mineo Shibasaka, Hideo Tsuji (1994) Resistance to oxidative injury in submerged rice seedlings after exposure to air. Plant Cell Physiol. 35(2): 211-218
  70. Takashi Ushimaru, Mineo Shibasaka, Hideo Tsuji (1992) Development of the O2-detoxification system during adaptation to air of submerged rice seedlings. Plant Cell Physiol. 33(8): 1065-1071
  71. Takashi Ushimaru, Mineo Shibasaka, Hideo Tsuji (1992) Changes in levels of heme a, protoheme and protochlorophyll(ide) in submerged rice seedlings after exposure to air. Plant Cell Physiol. 33 (6): 771-778

《総説》
1. 谷内江 望、吉田知史、大西雅之、丑丸敬史、守屋央朗 (2012) 酵母コロキアム – 21世紀酵母生物学のオンラインフォーラム。細胞工学 31 (5) 604-607. (2012.04.22)
2. Katsumi Amako, Takashi Ushimaru* (2009) Dehydroascorbate reductase and salt stress. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. March, 2009, 4(13), 1-7.
3. 丑丸敬史*、牧野仁志穂、山田ちひろ(2008)TORによる栄養源に応答したリボソーム合成制御。化学と生物 46(6), 386-391.
4. 丑丸敬史*、塩田良(2007)栄養源に応答したTORキナーゼによるリボソーム合成制御。蛋白質核酸酵素 52(4), 342-347.
5. 丑丸敬史*、丸山裕徳、塩田良(2006)栄養源に応答したTOR/Nogsomeによるリボソーム合成制御 細胞工学:25(11), 1292-1293.
6. 増沢武弘、木嵜暁子、丑丸敬史(2006)富士山の冬を常緑で過ごす草本植物。科学 76(2), 198-201.
7. 丑丸敬史*、辻英夫 (1996) 高等植物は酸素に対してどのように適応しているか:SODなど活性酸素消去系酵素や抗酸化物質の変動を探る。化学と生物 34: 76-78.

《著書・訳書》
1. 丑丸敬史、他(2016/3/28)『<生きる>を考える』2015年度静岡大学・読売新聞連続市民講座、静岡大学イノベーション社会連携推進機構(編)、分担:「老いを科学する」(pp31-54)
2. 丑丸敬史、他(2016/3/9)『ナノバイオ・テクノロジー』静岡大学ナノバイオ科学研究分野編、静岡学術出版、分担:「細胞老化に対するナノバイオからのアプローチ」(pp88-105)
3. 丑丸敬史、泰中啓一 (2013)『酵母 —生命研究のスーパースター』静岡学術出版、分担(pp10-185)
4. 驚異の長寿因子ラパマイシン(原題“A New Path to Longevity”, David Stipp著)(2012) 日経サイエンス2012年4月号pp49-57 訳監修
5. Katsumi Amako and Takashi Ushimaru* (2011) Salt stress and transgenic plants overexpressing dehydroascorbate reductase. In “Antioixidants: Oxidative Stress Management in Plants”, ISBN: 978-93-80012-38-4, Pages: 369, Ed. Parvaiz Ahmad and Shahid Umar, Studium Press (India) Pvt. Ltd., New Delhi. pp. 55-69. (BOOK CHAPTER).