English Papers(*;corresponding author)
Elucidation of ubiquitin-related functions by ubiquitin overexpression approach
Masuda R, Yoshikawa M, Moriuchi R, Oba Y, Dohra H, and Kimura Y *
Cells 13, 2011. 2024
Physicochemical properties of the vacuolar membrane and cellular factors determine formation of vacuolar invaginations| Scientific Reports
Kimura Y*, Tsuji T, Shimizu Y, Watanabe Y, Kimura M, Fujimoto T, and
Higuchi M
Scientific Reports vol. 13, Article number: 16187 (2023)
S-Adenosylhomocysteine Analogue of a Fairy Chemical,
Imidazole-4-carboxamide, as its Metabolite in Rice and Yeast and Synthetic Investigations of Related Compounds
Hitoshi Ouchi, Takuya Namiki, Kenji Iwamoto, Nobuo Matsuzaki, Makoto
Inai, Mihaya Kotajima, Jing Wu, Jae-Hoon Choi, Yoko Kimura, Hirofumi
Hirai, Xiaonan Xie, Hirokazu Kawagishi*, and Toshiyuki Kan
J. Nat. Prod. 2021, 84, 2, 453–458
Role of Atg8 in the regulation of vacuolar membrane invagination
https://www.nature.com/articles/s41598-019-51254-1
Ishii A, Kurokawa N, Hotta M, Yoshizaki S, Kurita M, Koyano A,Nakano A and Kimura Y*.
Scientific Reports. 9: Article No. 14828, 2019
Parkin-mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes
Koyano F, Yamano K, Kosako H, Kimura Y, Kimura M, Fujiki Y,Tanaka K, and Matsuda N
EMBO Reports 20(12) e47728, 2019
Accelerated invagination of vacuoles as a stress response in chronically heat-stressed yeasts.
https://pubmed.ncbi.nlm.nih.gov/29422608/
Ishii A, Kawai M, Noda H, Kato H, Takeda K, Asakawa K, Ichikawa Y, Sasanami T, Tanaka K, and Kimura Y*. Scientific Reports. 8: Article No. 2644, 2018
Improvement in cognitive function with green soybean extract may be caused by increased neuritogenesis and BDNF expression.
Pervin M, Unno K, Nakayama Y, Ikemoto H, Imai S, Iguchi K, Minami A, Kimura Y and Nakamura Y. J. Food Processing and Technology. 8:1000695, 2017
https://pubmed.ncbi.nlm.nih.gov/26150415/
Kimura Y*, Tanigawa M, Kawawaki J, Takagi K, Mizushima T, Maeda T, Tanaka K.
Eukaryot Cell. 10:976-82. 2015
Rescue of a growth defect from a GPI10 mutation by VCP/Cdc48
https://pubmed.ncbi.nlm.nih.gov/25625920/
Ohnuma Y, Takata T, Kawawaki J, Yasuda K, Tanaka K, Kimura Y*, and Kakizuka A*.
FEBS Lett.589:576-80.2015
https://pubmed.ncbi.nlm.nih.gov/24962567/
Kimura Y*, Kawawaki J, Kakiyama Y, Shimoda A, and Tanaka K.
J. Biol. Chem. 289:21760-21769. 2014
Ubiquitin is phosphorylated by PINK1 to activate parkin.
https://pubmed.ncbi.nlm.nih.gov/24784582/
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M. Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon E, Trempe J, Saeki Y, Tanaka K, and Matsuda N.
Nature 510:162-166. 2014
https://pubmed.ncbi.nlm.nih.gov/24215292/
Kimura Y*, Fukushi J, Hori S, Matsuda N, Okatsu K, Kakiyama Y, Kawawaki J, Kakizuka A and Tanaka K.
Genes Cells 18:1131-1143. 2013
Rescue of growth defects of yeast cdc48 mutants by pathogenic IBMPFD-VCPs.
https://pubmed.ncbi.nlm.nih.gov/22728077/
Takata T, Kimura Y*, Ohnuma Y, Kawawaki J, Kakiyama Y, Tanaka K, and Kakizuka A*.
J.Struct. Biol. 179:93-103. 2012
Huntingtin aggregation kinetics and their pathological role in a Drosophila Huntington’s disease model.
https://pubmed.ncbi.nlm.nih.gov/22095086/
Weiss K, Kimura Y, Lee W, and Littleton T.
Genetics 190:581-600. 2012
Regulatory mechanisms involved in the control of ubiquitin homeostasis.
http://www.ncbi.nlm.nih.gov/pubmed/20418328
Kimura Y* and Tanaka K.
J.Biochem. 147:793-798. 2010
An inhibitor of deubiquitinating enzyme regulates ubiquitin homeostasis.
http://www.ncbi.nlm.nih.gov/pubmed/19410548
Kimura Y*, Yashiroda H, Kudo T, Koitabashi S, Murata S, Kakizuka A and Tanaka K.
Cell 137:549-559. 2009
p97valosin-containing protein (VCP) is highly modulated by phosphorylation and acetylation.
http://www.ncbi.nlm.nih.gov/pubmed/19335618
Mori-Konya C, Kato N, Maeda R, Yasuda K, Higashimae N, Noguchi M, Koike M, Kimura Y, Ohizumi H, Hori S, and Kakizuka A.
Genes Cells 14:483-497. 2009
Therapeutic prospects for the prevention of neurodegeneration in Huntington’s disease and the polyglutamine repeat disorders.
http://www.ncbi.nlm.nih.gov/pubmed/17266642
Kimura Y, Lee WX, and Littleton JT.
Rev Med Chem. 7: 99-106. 2007
ATPase activity of VCP is regulated by oxidative modification of the evolutionally conserved cysteine 522 residue in walker A motif.
http://www.ncbi.nlm.nih.gov/pubmed/16234241
Noguchi M, Tanaka T, Kimura Y, A, Murakami K. Koike M, Ohizumi H, Hori S, and Kakizuka A.
J. Biol. Chem. 280:41332-41. 2005
The role of pre-existing aggregates in Hsp104-dependnent polyglutamine aggregate formation and epigenetic change of yeast prions.
http://www.ncbi.nlm.nih.gov/pubmed/15298677
Kimura Y*, Koitabashi S, Kakizuka A, and Fujita T.
Genes Cells 9:685-696. 2004
Analysis of yeast prion aggregates with amyloid-staining compound in vivo.
http://http//www.ncbi.nlm.nih.gov/pubmed/12951439
Kimura Y*, Koitabashi S. and Fujita T.
Cell Struc. Func. 28:187-193. 2003
Polyglutamine diseases and molecular chaperones.
http://www.ncbi.nlm.nih.gov/pubmed/12938736
Kimura Y, and Kakizuka A
IUBMB Life 55: 337-345. 2003
Circumvention of chaperone requirement for aggregate formation of a short polyglutamine tract by the co-expression of a long polyglutamine tract.
http://www.ncbi.nlm.nih.gov/pubmed/12161426
Kimura Y*, Koitabashi S, Kakizuka A, and Fujita T.
J.Biol. Chem. 277: 37536-37541. 2002
Interaction between the N-terminal and middle regions is essential for the in vivo function of HSP90 molecular chaperone.
http://www.ncbi.nlm.nih.gov/pubmed/?term=12121981
Matsumoto S, Tanaka E, Nemoto T, Ono T, Takagi T, Imai J, Kimura Y, Yahara I, Kobayakawa T, Ayuse T, Oi K, and Mizuno A.
J.Biol. Chem. 277:34959-34966. 2002
Initial process of polyglutamine aggregate formation in vivo.
http://www.ncbi.nlm.nih.gov/pubmed/11683917
Kimura Y*, Koitabashi S, Kakizuka A, and Fujita T.
Genes Cells 6:887-897. 2001
VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration.
http://www.ncbi.nlm.nih.gov/pubmed/11598795
Hirabayashi M, Inoue K, Tanaka K, Nakadate K, Ohsawa Y, Kamei Y, Popiel A H, Sinohara A, Iwamatsu A, Kimura Y, Uchiyama Y, Hori S, and Kakizuka A.
Cell Death Differ. 8: 977-984. 2001
Cdc37 is a molecular chaperone with specific functions in signal transduction.
http://www.ncbi.nlm.nih.gov/pubmed/9242486
Kimura Y, Rutherford S, Miyata Y, Yahara I, Freeman B C, Yue L, Morimoto R I, and Lindquist S.
Genes and Dev. 11:1775-1785. 1997
Saccharomyces cerevisiae Hsp90.
Kimura Y, and Lindquist SL.
In “Guidebook to Molecular Chaperones and Protein-folding catalysis. (ed. M-J. Gething). pp152-154. 1997
Role of protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways.
http://www.ncbi.nlm.nih.gov/pubmed/7761857
Kimura Y, Yahara I, and Lindquist S.
Science 268:1362-1365. 1995
Temperature-sensitive mutants of hsp82 of the budding yeast Saccharomyces cerevisiae.
http://www.ncbi.nlm.nih.gov/pubmed/8121410
Kimura Y, Matsumoto S, and Yahara I.
Mol. Gen. Genet. 242:517-527. 1994
The carboxyl-terminal region of mammalian HSP90 is required for its dimerization and function in vivo.
http://www.ncbi.nlm.nih.gov/pubmed/8289821
Minami, Y, Kimura Y, Kawasaki H, Suzuki K. and Yahara I.
Mol. Cell. Biol. 14:1459-1464. 1994
Structure and function of the 90-kDa stress protein, HSP90.
Yahara I, Minami Y, Yonehara M, Kimura Y, and Miyata Y.
J. UEOH 15:50-54. 1993
An alteration in molecular form associated with activation of human heat shock factor.
http://www.ncbi.nlm.nih.gov/pubmed/1913856
Kimura Y, Taniguchi T, and Yahara I.
Cell Struc. Func. 16:263-271. 1991
HSP90, a carrier of key proteins that regulates cell function.
Yahara I, Miyata Y, Minami Y, Kimura Y, Matsumoto S, Koyasu S, Yonezawa N, Nishida E, and Sakai H.
In “Heat Shock” (B. Maresca and S. Lindquist eds) Springer-Verlag. pp119-122. 1991
Induction of the transcription factor IRF-1 and interferon-b mRNAs by cytokines and activators of second-messenger pathways.
Fujita T, Reis L, Watanabe N, Kimura Y, Taniguchi T, and Vilcek J.
Proc. Natl. Acad. Sci. 86:9936-9940. 1989
Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes.
Harada H, Fujita T, Miyamoto M, Kimura Y, Maruyama M, Furia A, Miyata, T and Taniguchi T.
Cell 58:729-739. 1989
Involvement of a cis-element that binds an H2TF-1/NF kB like factor(s) in the virus-induced interferon-b gene expression
Fujita T, Miyamoto M, Kimura Y, Hammer J, and Taniguchi T.
Nucl. Acid Res. 17:3335-3346. 1989
Induction of endogenous IFN-a and IFN-b genes by a regulatory transcription factor, IRF-1.
Fujita T, Kimura Y, Miyamoto M, Barsoumian E, and Taniguchi T.
Nature 337:270-272. 1989
Evidence for a nuclear factor(s), IRF-1, mediated induction and silencing properties to human IFN-b gene regulatory elements.
Fujita T, Sakakibara J, Sudo Y, Miyamoto M, Kimura Y, and Taniguchi T.
EMBO J. 7:3397-3405. 1988
Regulated expression of a gene encoding a nuclear factor, IRF-1 that specifically binds to IFN-b gene regulatory elements.
Miyamoto M, Fujita T, Kimura Y, Maruyama M, Harada H, Sudo Y, T. Miyata T, and Taniguchi T. Cell 54:903-913. 1988
Molecular cloning of a gene encoding transcription factor, IRF-1, that mediates IFN-b gene expression.
Fujita T, Miyamoto M, Kimura Y, Sakakibara J, Sudo Y, Maruyama M, Mori H, and Taniguchi T.
The Biology of the Interferon System (Y. Kawade and S. Kobayashi eds) pp25-32. 1988
Cytokine gene expression: Regulation in the type I IFN and the IL-2 systems.
Taniguchi T, Fujita T. Yamada G. Miyamoto M. Harada H. Kimura Y. Maruyama M. and Shibuya H.
The Biology of the Interferon System (Y. Kawade and S. Kobayashi eds) p3-10. 1988