English Papers

English Papers(*;corresponding author)


S-Adenosylhomocysteine Analogue of a Fairy Chemical,
Imidazole-4-carboxamide, as its Metabolite in Rice and Yeast and Synthetic Investigations of Related Compounds

Hitoshi Ouchi, Takuya Namiki, Kenji Iwamoto, Nobuo Matsuzaki, Makoto
Inai, Mihaya Kotajima, Jing Wu, Jae-Hoon Choi, Yoko Kimura, Hirofumi
Hirai, Xiaonan Xie, Hirokazu Kawagishi*, and Toshiyuki Kan
J. Nat. Prod. 2021, 84, 2, 453–458


 

Role of Atg8 in the regulation of vacuolar membrane invagination

https://www.nature.com/articles/s41598-019-51254-1

Ishii A, Kurokawa N, Hotta M, Yoshizaki S, Kurita M, Koyano A,Nakano A and Kimura Y*.
Scientific Reports.  9: Article No. 14828, 2019


Parkin-mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes

​Koyano F, Yamano K, Kosako H, Kimura Y, Kimura M, Fujiki Y,Tanaka K, and Matsuda N
EMBO Reports  20(12) e47728, 2019


Accelerated invagination of vacuoles as a stress response in chronically heat-stressed yeasts.
https://pubmed.ncbi.nlm.nih.gov/29422608/

Ishii A, Kawai M, Noda H, Kato H, Takeda K, Asakawa K, Ichikawa Y, Sasanami T, Tanaka K, and Kimura Y*.   Scientific Reports. 8: Article No. 2644, 2018


Improvement in cognitive function with green soybean extract may be caused by increased neuritogenesis and BDNF expression.
Pervin M, Unno K, Nakayama Y, Ikemoto H, Imai S, Iguchi K, Minami A, Kimura Y and Nakamura Y.   J. Food Processing and Technology. 8:1000695, 2017


Conserved Mode of Interaction between Yeast Bro1 Family V Domains and YP(X)nL Motif-Containing Target Proteins

https://pubmed.ncbi.nlm.nih.gov/26150415/

Kimura Y*, Tanigawa M, Kawawaki J, Takagi K, Mizushima T, Maeda T, Tanaka K.
Eukaryot Cell. 10:976-82. 2015


Rescue of a growth defect from a GPI10 mutation by VCP/Cdc48

https://pubmed.ncbi.nlm.nih.gov/25625920/

Ohnuma Y, Takata T, Kawawaki J, Yasuda K, Tanaka K, Kimura Y*, and Kakizuka A*.
FEBS Lett.589:576-80.2015


The ESCRT-III adaptor protein Bro1 controls functions of regulator for free ubiquitin chains 1 (Rfu1) in ubiquitin homeostasis.

https://pubmed.ncbi.nlm.nih.gov/24962567/

Kimura Y*, Kawawaki J, Kakiyama Y, Shimoda A, and Tanaka K.
J. Biol. Chem. 289:21760-21769. 2014


Ubiquitin is phosphorylated by PINK1 to activate parkin.

https://pubmed.ncbi.nlm.nih.gov/24784582/

Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M. Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon E, Trempe J, Saeki Y, Tanaka K, and Matsuda N.
Nature 510:162-166. 2014


Different dynamic movements of wild-type and pathogenic VCPs and their cofactors to damaged mitochondria in a Parkin-mediated mitochondrial quality control system.

https://pubmed.ncbi.nlm.nih.gov/24215292/

Kimura Y*, Fukushi J, Hori S, Matsuda N, Okatsu K, Kakiyama Y, Kawawaki J, Kakizuka A and Tanaka K.
Genes Cells 18:1131-1143. 2013


Rescue of growth defects of yeast cdc48 mutants by pathogenic IBMPFD-VCPs.

https://pubmed.ncbi.nlm.nih.gov/22728077/

Takata T, Kimura Y*, Ohnuma Y, Kawawaki J, Kakiyama Y, Tanaka K, and Kakizuka A*.
J.Struct. Biol. 179:93-103. 2012


Huntingtin aggregation kinetics and their pathological role in a Drosophila Huntington’s disease model.
https://pubmed.ncbi.nlm.nih.gov/22095086/

Weiss K, Kimura Y, Lee W, and Littleton T.
Genetics 190:581-600. 2012


Regulatory mechanisms involved in the control of ubiquitin homeostasis.
http://www.ncbi.nlm.nih.gov/pubmed/20418328

Kimura Y* and Tanaka K.
J.Biochem. 147:793-798. 2010


An inhibitor of deubiquitinating enzyme regulates ubiquitin homeostasis.
http://www.ncbi.nlm.nih.gov/pubmed/19410548

Kimura Y*, Yashiroda H, Kudo T, Koitabashi S, Murata S, Kakizuka A and Tanaka K.
Cell 137:549-559. 2009


p97valosin-containing protein (VCP) is highly modulated by phosphorylation and acetylation.
http://www.ncbi.nlm.nih.gov/pubmed/19335618

Mori-Konya C, Kato N, Maeda R, Yasuda K, Higashimae N, Noguchi M, Koike M, Kimura Y, Ohizumi H, Hori S, and Kakizuka A.
Genes Cells 14:483-497. 2009


Therapeutic prospects for the prevention of neurodegeneration in Huntington’s disease and the polyglutamine repeat disorders.
http://www.ncbi.nlm.nih.gov/pubmed/17266642

Kimura Y, Lee WX, and Littleton JT.
Rev Med Chem. 7: 99-106. 2007


ATPase activity of VCP is regulated by oxidative modification of the evolutionally conserved cysteine 522 residue in walker A motif.
http://www.ncbi.nlm.nih.gov/pubmed/16234241

Noguchi M, Tanaka T, Kimura Y, A, Murakami K. Koike M, Ohizumi H, Hori S, and Kakizuka A.
J. Biol. Chem. 280:41332-41. 2005


The role of pre-existing aggregates in Hsp104-dependnent polyglutamine aggregate formation and epigenetic change of yeast prions.
http://www.ncbi.nlm.nih.gov/pubmed/15298677

Kimura Y*, Koitabashi S, Kakizuka A, and Fujita T.
Genes Cells 9:685-696. 2004


Analysis of yeast prion aggregates with amyloid-staining compound in vivo.
http://http//www.ncbi.nlm.nih.gov/pubmed/12951439

Kimura Y*, Koitabashi S. and Fujita T.
Cell Struc. Func. 28:187-193. 2003


Polyglutamine diseases and molecular chaperones.
http://www.ncbi.nlm.nih.gov/pubmed/12938736

Kimura Y, and Kakizuka A
IUBMB Life 55: 337-345. 2003


Circumvention of chaperone requirement for aggregate formation of a short polyglutamine tract by the co-expression of a long polyglutamine tract.
http://www.ncbi.nlm.nih.gov/pubmed/12161426

Kimura Y*, Koitabashi S, Kakizuka A, and Fujita T.
J.Biol. Chem. 277: 37536-37541. 2002


Interaction between the N-terminal and middle regions is essential for the in vivo function of HSP90 molecular chaperone.
http://www.ncbi.nlm.nih.gov/pubmed/?term=12121981

Matsumoto S, Tanaka E, Nemoto T, Ono T, Takagi T, Imai J, Kimura Y, Yahara I, Kobayakawa T, Ayuse T, Oi K, and Mizuno A.
J.Biol. Chem. 277:34959-34966. 2002


Initial process of polyglutamine aggregate formation in vivo.
http://www.ncbi.nlm.nih.gov/pubmed/11683917

Kimura Y*, Koitabashi S, Kakizuka A, and Fujita T.
Genes Cells 6:887-897. 2001


VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration.
http://www.ncbi.nlm.nih.gov/pubmed/11598795

Hirabayashi M, Inoue K, Tanaka K, Nakadate K, Ohsawa Y, Kamei Y, Popiel A H, Sinohara A, Iwamatsu A, Kimura Y, Uchiyama Y, Hori S, and Kakizuka A.
Cell Death Differ. 8: 977-984. 2001


Cdc37 is a molecular chaperone with specific functions in signal transduction.
http://www.ncbi.nlm.nih.gov/pubmed/9242486

Kimura Y, Rutherford S, Miyata Y, Yahara I, Freeman B C, Yue L, Morimoto R I, and Lindquist S.
Genes and Dev. 11:1775-1785. 1997


Saccharomyces cerevisiae Hsp90.
Kimura Y, and Lindquist SL.
In “Guidebook to Molecular Chaperones and Protein-folding catalysis. (ed. M-J. Gething). pp152-154. 1997


Role of protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways.
http://www.ncbi.nlm.nih.gov/pubmed/7761857

Kimura Y, Yahara I, and Lindquist S.
Science 268:1362-1365. 1995


Temperature-sensitive mutants of hsp82 of the budding yeast Saccharomyces cerevisiae.
http://www.ncbi.nlm.nih.gov/pubmed/8121410

Kimura Y, Matsumoto S, and Yahara I.
Mol. Gen. Genet. 242:517-527. 1994


The carboxyl-terminal region of mammalian HSP90 is required for its dimerization and function in vivo.
http://www.ncbi.nlm.nih.gov/pubmed/8289821

Minami, Y, Kimura Y, Kawasaki H, Suzuki K. and Yahara I.
Mol. Cell. Biol. 14:1459-1464. 1994


Structure and function of the 90-kDa stress protein, HSP90.
Yahara I, Minami Y, Yonehara M, Kimura Y, and Miyata Y.
J. UEOH 15:50-54. 1993


An alteration in molecular form associated with activation of human heat shock factor.
http://www.ncbi.nlm.nih.gov/pubmed/1913856

Kimura Y, Taniguchi T, and Yahara I.
Cell Struc. Func. 16:263-271. 1991


HSP90, a carrier of key proteins that regulates cell function.
Yahara I, Miyata Y, Minami Y, Kimura Y, Matsumoto S, Koyasu S, Yonezawa N, Nishida E, and Sakai H.
In “Heat Shock” (B. Maresca and S. Lindquist eds) Springer-Verlag. pp119-122. 1991


Induction of the transcription factor IRF-1 and interferon-b mRNAs by cytokines and activators of second-messenger pathways.
Fujita T, Reis L, Watanabe N, Kimura Y, Taniguchi T, and Vilcek J.
Proc. Natl. Acad. Sci. 86:9936-9940. 1989


Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes.
Harada H, Fujita T, Miyamoto M, Kimura Y, Maruyama M, Furia A, Miyata, T and Taniguchi T.
Cell 58:729-739. 1989


Involvement of a cis-element that binds an H2TF-1/NF kB like factor(s) in the virus-induced interferon-b gene expression
Fujita T, Miyamoto M, Kimura Y, Hammer J, and Taniguchi T.
Nucl. Acid Res. 17:3335-3346. 1989


Induction of endogenous IFN-a and IFN-b genes by a regulatory transcription factor, IRF-1.
Fujita T, Kimura Y, Miyamoto M, Barsoumian E, and Taniguchi T.
Nature 337:270-272. 1989


Evidence for a nuclear factor(s), IRF-1, mediated induction and silencing properties to human IFN-b gene regulatory elements.
Fujita T, Sakakibara J, Sudo Y, Miyamoto M, Kimura Y, and Taniguchi T.
EMBO J. 7:3397-3405. 1988


Regulated expression of a gene encoding a nuclear factor, IRF-1 that specifically binds to IFN-b gene regulatory elements.
Miyamoto M, Fujita T, Kimura Y, Maruyama M, Harada H, Sudo Y, T. Miyata T, and Taniguchi T. Cell 54:903-913. 1988


Molecular cloning of a gene encoding transcription factor, IRF-1, that mediates IFN-b gene expression.
Fujita T, Miyamoto M, Kimura Y, Sakakibara J, Sudo Y, Maruyama M, Mori H, and Taniguchi T.
The Biology of the Interferon System (Y. Kawade and S. Kobayashi eds) pp25-32. 1988


Cytokine gene expression: Regulation in the type I IFN and the IL-2 systems.
Taniguchi T, Fujita T. Yamada G. Miyamoto M. Harada H. Kimura Y. Maruyama M. and Shibuya H.
The Biology of the Interferon System (Y. Kawade and S. Kobayashi eds) p3-10. 1988