研究


目的
  集積回路工学の研究を通して情報通信社会のグリーン化に貢献すること

注目する分野  農業・工業・商業の一層の効率化や高齢化・人口減少などの社会の変動に対応するために、あらゆるモノにセンサーと情報通信回路をつけて自律的に情報収集を行う「モノのインターネット(IoT)」に注目が集まっている。IoT用集積回路は環境から収穫したエネルギーで動作するため、あるいは小型のバッテリーで長期間動作できるように、極めて低い電力で機能することが求められている。これは、回収できる環境エネルギーが非常に限定的であるためであり、また2020年代には年間一兆個のセンサーが出荷されると期待されている端末のバッテリー交換費用が支配的にならないためである。IoT用集積回路の極低電力化を実現するために、私たちの研究室では次の三つの回路領域に注目している。
1)                  エネルギー収穫のための高効率な電力変換回路 (研究例1 YouTube)
2)                 
新しいスイッチ素子で構成する低電力アナログ・デジタル回路
3)                 
不揮発性記憶素子の低電力制御・検出回路  (研究例2 YouTube)

 

 

 

Research map

研究内容(1992-2016)

———————————————————————————————————-
研究
教育
研究者
教員

 

 

教育


目標
1)基礎に戻って考える習慣を身につけられるように
研究者や技術者には、それぞれの問題に対する妥当な答えを出すことが求められます。その問題に対する直接的な答えは教科書やインターネットには載ってないでしょう。そのようなものは「問題」にはならないからです。それでは、誰も知らない答えはどのように求めていけばいいでしょうか?
できることは、私たちの知っている先人の知恵を自分のやり方でつなぎ合わせていって客観的に一番いいだろうというものを示すことしかありません。私が恩師たちから教わってきたのは、要約すれば「基礎に戻って考える」ということだった、ことに気づきます。卒業研究や博士課程の研究を行う研究者が研究室を後にするときに、この「基礎に戻って考える」ということが身についているような、そういう研究教育をすることが私の目標です。

2)周りの人に理解される説明ができるように
もう一つ研究者や技術者にとって大切なのは、自分で見つけた問題や求めた答えを周りの人に理解されるように説明ができることです。問題は何か、可能な答えは何か、その中でどの答えが最善か、その効果はどれくらいか、をあなたの同僚、先生、上司、あるいは会議の参加者が理解できるように説明することです。それでは、どのようにしてそれを身につけられるようになるでしょうか?
輪講で読む教科書を単に訳してこれを話すというのではなく、そこに書かれたことをその背景を含めて説明できるようにしたり、グラフや図で書かれていることを、著者がそこには記載しなかったことも含めて説明できるようにすることを繰り返すことによって。また、自分の研究発表にたくさんの質問をもらって、それらに誠実に答えることができるようにすることによって。発表の機会をできるだけ作ることが私の目標です。

研究の流れ
卒業研究者は以下の#1-5を通して回路設計の研究方法を学び、修士課程研究者は#6-7を含めて回路設計・評価・解析という一連の設計プロセスを経験することができます。卒業研究者に求められるのは、数学的なセンスを磨きながら、回路の設計を行い、紙と鉛筆で特性を予測し、回路の振る舞いを解析することです。修士課程研究者はそれに加えて、期待した回路性能を実現する回路の設計と試作を実施することです。シリコンがどれくらいシミュレーションと異なった動作をするかを身を持って体験することができます。それらの違いが何によるものかを解析することで、現実の回路を期待通りに動作させるために必要なことを理解することができるようになります。重要なのは、研究室で具体的にどんな回路システムを研究しているかとか、どれだけうまく設計ができたかということより、あなたの研究開発の対象が今後どのようなものになっても適用できるような「研究の取り組み方」を身につけること、です。

1)自分で設計したい回路を見つける(三つの研究分野あるいはそれ以外の分野から)
2)その回路を理解する、頭の中で回路を動かす
3)紙と鉛筆で回路の最適化を行う
4)目標指標を決めてそれに合った回路を設計する
5)回路シミュレータでシミュレーションを行って、設計した回路が目標指標を満たすことを確認する
6)設計した回路図からレイアウト設計をして、シリコンに実装する
7)試作した回路を測定して回路動作を評価解析する

 研究室選びをしている学生の方へ

There is no failure except in no longer trying. ~失敗ということはない、あきらめない限り~
(アメリカの小説家:Elbert Hubbard、実践ビジネス英会話:杉田敏先生より)

すぐに役立つことはすぐに役立たなくなる(元灘校国語教師:橋本武先生)

仮説を証明するために 
学習+スマホ~0というケース
一対一
□+□=10
大学と企業の研究
再試験を逃げない学生
仕事ののりしろ
「Grit (やり抜く力)」 

(電通学会誌)回想

研究者


2023

Tanabe, S.; Tanzawa, T. Battery-Assisted Battery Charger with Maximum Power Point Tracking for Thermoelectric Generator: Concept and Experimental Proof. Electronics 2023, 12, 4102.
小坪稜麻, 丹沢 徹, クロスカップルRF-DCチャージポンプ出力電圧電流特性の非線形性について, 電子情報通信学会ソサイエティ大会, 2023年9月.
田辺駿介, 丹沢 徹, 熱電発電用バッテリ充電器のMPPT回路システム設計, 電子情報通信学会ソサイエティ大会, 2023年9月.
S. Tanabe, Y. Sakamoto, H. Uchida, T. Tanzawa, “A Hybrid Thermoelectric Generator – Battery Power Supply System Toward Replacement-Free Battery”, IEEE 11th International Conference on Power Electronics – ECCE Asia, pp. 1817 – 1822, May 2023.

植村, LC発振器駆動チャージポンプの設計, LSIとシステムのワークショップ, 2023/5月
稲葉, 振幅拡大型コルピッツ・オシレータとそれを利用したオンチップ昇圧回路の設計, LSIとシステムのワークショップ, 2023/5月
齋藤, 極低電圧電源動作バッテリ充電器の設計, LSIとシステムのワークショップ, 2023/5月
宮崎, 静電振動発電用降圧コンバータの設計, LSIとシステムのワークショップ, 2023/5月


2022


T. Hashimoto, A −31.7 dBm Sensitivity 0.011 mm2 CMOS On-Chip Rectifier for Microwave Wireless Power Transfer, Electronics , 12(6), 1400 (2023)
宮崎直人, 静電振動発電用 Switched-Capacitor AC-DC変換回路の設計, C-12-11, 信学会総合大会, 2023/3月
稲葉泰誠, 電圧振幅拡大型コルピッツオシレータのゲート接地利得モデル, C-12-12, 信学会総合大会, 2023/3月
牧野 耀, 二電源NANDフラッシュの低電力化回路方式の設計評価, C-12-13, 信学会総合大会, 2023/3月
橋本拓磨, 高入力感度マイクロ波無線電力伝送用CMOSオンチップ整流回路の設計, C-12-14, 信学会総合大会, 2023/3月
齋藤 航, 極低電圧電源でバッテリを充電する昇圧コンバータの設計, C-12-15, 信学会総合大会, 2023/3月
角 果音, エネルギー・ハーベスト用小型二次電池のトリクル充放電動作の有効性評価, C-12-16, 信学会総合大会, 2023/3月
山野智輝, 環境発電素子でバッテリを充電するチャージポンプの設計, C-12-17, 信学会総合大会, 2023/3月
濃野公一, 熱電発電用チャージポンプ電源回路の出力電力密度最大化設計, C-12-18, 信学会総合大会, 2023/3月
植村寛太, LC発振器駆動チャージポンプの出力パワー最大化設計, C-12-19, 信学会総合大会, 2023/3
K. Nono, One-Dimensional Maximum Power Point Tracking Design of Switched-Capacitor Charge Pumps for Thermoelectric Energy Harvesting, Electronics, 12(5), 1203, 2023.
田辺、バッテリーと熱電発電素子からなるハイブリッド電源用DC-DCコンバータ設計、電子情報通信学会/電子通信エネルギー技術研究会、2023年1月
小坪、無線電力伝送用ラッチ型RF-DCチャージポンプの回路モデル、電子情報通信学会/電子通信エネルギー技術研究会、2023年1月
金山、NANDフラッシュ用ブースト・コンバータの高速昇圧動作設計、電子情報通信学会/電子通信エネルギー技術研究会、2023年1月
H. Makino, A 30% Power Reduction Circuit Design for NAND Flash by Utilizing 1.2V I/O Power Supply to Bitline Path, IEEE the 18th Asia Pacific Conference on Circuits and Systems (APCCAS), Nov. 2022.
T. Hashimoto, Design Space Exploration of Antenna Impedance and On-Chip Rectifier for Microwave Wireless Power Transfer, Electronics , 11/19, 3218 (2022)
T. Nomura, More Enhanced Swing Colpitts Oscillators: A Circuit Analysis, Electronics , 11/18, 2808 (2022)
S. Tanabe, Evaluation of DC/DC converter for hybrid power supply of thermoelectric generator and battery, C-12-2, Sep. 2022 (In Japanese)

T. Kotsubo, The Origin of the Output Resistance in subthreshold Operation CMOS Latch-type RF-DC Charge Pump Circuits, C-12-3, Sep. 2022 (In Japanese)
T. Hashimoto, Proposal of a Design Flow for Minimum Input-Power Rectenna Having Antenna and On-Chip Rectifier,  C-12-4, Sep. 2022 (In Japanese)
Y. Kanayama, Dependence of Boosting time of Fast Boost Converters on Variation in Parasitic Resistance of Inductor and Switching MOSFETs, C-12-5, Sep. 2022 (In Japanese)
T. Hashimoto, Antenna/On-Chip-Rectifier Co-Design Methodology for Micro-Watt Microwave Wireless Power Transfer, 65th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2022).
J. Kondo, Pre-Emphasis Pulse Design for Reducing Bit-Line Access Time in NAND Flash Memory, Electronics 11/13 1926 (2022)
Y. Demura, Design of Switched-Capacitor DC-DC Voltage-Down Converters Driven by Highly Resistive Energy Transducer, Electronics 11/12, 1874 (2022)
橋本 拓磨, マイクロ波無線電力伝送レクテナの入力パワー最小化設計, 1010, LSIとシステムのワークショップ, 2022年5月.
金山 湧司, NANDフラッシュ用ブースト・コンバータの最速昇圧方式の提案, 1017, LSIとシステムのワークショップ, 2022年5月.
小坪 稜麻, CMOSラッチ型チャージポンプの出力抵抗モデル, 1020, LSIとシステムのワークショップ, 2022年5月.
田辺 駿介, 熱電素子・バッテリーのハイブリッド電源用DC/DC コンバータの設計, 1021, LSIとシステムのワークショップ, 2022年5月.
濃野 公一, 環境温度が変動時しても常に出力電力を最大にする熱電発電用チャージポンプ回路システムの設計1030, LSIとシステムのワークショップ, 2022年5月.
牧野 耀, NANDフラッシュの読み出し動作に伴うビット線パスの電力を60%削減する回路設計, 1031, LSIとシステムのワークショップ, 2022年5月.

2021

J. Kondo, Pre-emphasis pulse design for ABL sensing of NAND, IEICE general conference, C-12-8, Mar. 2022. (In Japanese)
Y. Kanayama, Ramp-up performance limit of boost converters, IEICE general conference, C-12-23, Mar. 2022. (In Japanese)
R. Kotsubo, Modeling of Latched RF-DC Converters, IEICE general conference, C-12-19, Mar. 2022. (In Japanese)
Y. Kotoya, Regulator design for resonator-oscillator-rectifier booster, IEICE general conference, C-12-22, Mar. 2022. (In Japanese)
S. Tanabe, Modeling of Buck converter for TEG-Battery hybrid system, IEICE general conference, C-12-20, Mar. 2022. (In Japanese)
Y. Demura, Design of switched-capacitor DC-DC converters driven by transducers with high output impedance, IEICE general conference, C-12-21, Mar. 2022. (In Japanese)
Y. Tone, “An Optimum Structure of Scalable Capacitors in 3D Crosspoint Memory Technology”, Electronics 2021, 10(22), 2755; https://doi.org/10.3390/electronics10222755.
K. Nono, A Design of Charge Pump System with Maximum Power Point Tracking for Low Cost Thermoelectric Energy Harvesting, IEICE society conf., C-12-3, Sep. 2021. (In Japanese)
T. Hashimoto, An Optimum Design of Antenna and On-chip Rectifier for Micro-watt Microwave Wireless Power Transfer, IEICE society conf., C-2-19, Sep. 2021. (In Japanese)
H. Makino, A Low Power Design for NAND Flash with 1.2V I/O Power Supply, IEICE society conf., C-12-21, Sep. 2021. (In Japanese)
Y. Sakamoto, A Design of DC-DC Converter for Thermoelectric Energy Harvesting with Battery Backup, IEICE society conf., C-12-1, Sep. 2021.
T. Nomura, Self-oscillator-based DC-DC converter
Y. Ishida, “Design of interface circuits fabricated in 1V CMOS for electrostatic energy transducer with an open circuit voltage over 10V,” IEICE Technical Committee Conference on Integrated Circuits and Devices, Aug. 2021. (In Japanese)
Y. Sugiura, “Pre-Emphasis Pulse Design for Random-Access Memory,” Electronics 2021, 10(12), 1454; doi: 10.3390/electronics10121454
K. Koketsu, “Design of a Charge Pump Circuit and System with Input Impedance Modulation for a Flexible-Type Thermoelectric Generator with High-Output Impedance,” Electronics 2021, 10(10), 1212; doi: 10.3390/electronics10101212
Y. Ishida, “A Fully Integrated AC-DC Converter in 1 V CMOS for Electrostatic Vibration Energy Transducer with an Open Circuit Voltage of 10 V,” Electronics 2021, 10(10), 1185; DOI: 10.3390/electronics10101185
K. Matsuyama, “A Circuit Analysis of Pre-Emphasis Pulses for RC Delay Lines,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E104-A, No. 6, pp. 912-926, Jun. 2021.

2020
Y. Tone, “A Design Guideline of Scalable Capacitors in 3D Cross-Point Memory”, IEICE general conference, C-12-31, Mar. 2021.
K. Nono, “A Design of Adaptive Charge Pumps with Minimum Circuit Area for Thermoelectric Energy Harvesting under Temperature Variations”, IEICE general conference, C-12-27, Mar. 2021.
T. Hashimoto, “A Study on the Fundamental Limit of Integrated Rectifiers for Low Cost Microwave Wireless Power Transfer”, IEICE general conference, C-2-6, Mar. 2021.
H. Makino, “A Study of Sensing Schemes for NAND Flash: Shielded Bit-Line vs. All Bit-Line”, IEICE general conference, C-12-32, Mar. 2021.
H. Kawauchi, “A Fully Integrated Clocked AC-DC Charge Pump for Magnetostrictive Vibration Energy Harvesting”, Electronics, 9(12), pp. 2194, 2020. doi:10.3390/electronics9122194.
J. Ye, “An Optimum Design of Clocked AC-DC Charge Pump Circuits for Vibration Energy Harvesting,” Electronics, 9(12), pp. 2031, 2020. doi.org/10.3390/electronics9122031.
Y. Sakamoto, “An Experimental Study of Power Converter System with Battery and Thermoelectric Energy Transducer Connected in Series,” IEICE society conf., C-12-9, Sep. 2020.
T. Nomura, “An optimum design of self-oscillator-based DC-DC converter”
K. Koketsu, “A Design of Cold Start Charge Pump for Flexible Thermoelectric Generator with High Output Impedance,” IEEE ICECS, Nov. 2020.
Y. Tabuchi, “Rectenna with Serially Connected Diodes for Micro-watt Energy Harvesting,” WPTC, Nov. 2020.
Y. Ishida, “A process- and temperature- tolerant fully integrated shunt regulator,” IEICE society conf., C-12-8, Sep. 2020.
K. Koketsu, “A Control Circuit Design of Power Converter with Time-Division Input Impedance Modulation for Energy Transducer with High Output Impedance,” IEICE Technical Committee Conference on Integrated Circuits and Devices, Aug. 2020. (In Japanese)
Y. Tabuchi, “Mapping of Optimum Circuit Topology for Micro-Watt Rectenna in Output Voltage-Current Plane,” IEICE society conf., C-2-11, Sep. 2020.


2019
A. Ballo, “Linear distribution of capacitance in Dickson charge pumps to reduce rise time,” International Journal of Circuit Theory & Applications, Jan. 2020. Link
Y. Sakamoto, “A Power Converter System for Energy Harvesting Toward Zero Net Battery Power,” IEICE general conference, C-12-20, Mar. 2020.
Y. Sugiura, Pre-Emphasis Pulse Design for Random Access Memory, IEICE general conference, C-12-12, Mar. 2020.
T. Nomura, “A Double Resonant Enhanced Swing Colpitts Oscillator for Extremely Low-Voltage DC/DC Boost Conversion,” IEICE general conference,  C-12-18, Mar. 2020.
J. Ye, “An Optimum Circuit Design of clocked AC-DC charge pumps,” IEICE general conference, C-12-19, Mar. 2020.
Y. Ishida, AC-DC converter design for electrostatic vibration energy harvesting
K. Koketsu, DC-DC converter design for thermoelectric generator
Y. Tabuchi, Rectenna design for wireless power transmission
Y. Yamazaki, “A Design Window for Device Parameters of Rectifying Diodes in 2.4 GHz Micro-watt RF Energy Harvesting,” IEEE APMC, Dec. 2019.
H. Kawauchi, “A 2V 3.8μW Fully-Integrated Clocked AC-DC Charge Pump with 0.5V 500Ω Vibration Energy Harvester,” IEEE APCCAS, 5098, Nov. 2019.
K. Matsuyama, “A Pre-Emphasis Pulse Generator Insensitive to Process Variation for Driving Large Memory and Panel Display Arrays with Minimal Delay Time,” IEEE APCCAS, 5097, Nov. 2019.
K. Matsuyama, “Design of Pre-Emphasis Pulses for Large Memory Arrays with Minimal Word-Line Delay Time”, IEEE ISCAS, B1L-H-4, May 2019.
S. Tokuda, “Toward a minimum-operating-voltage design of DC-DC charge pump circuits for energy harvesting”, IEEE ISCAS, C5L-K-5, May 2019.

2018
Y. Ishida, “A Design of AC-DC Converters Fully Integrated in Standard CMOS for Electrostatic Vibration Energy Harvesting,” IEICE general conference, C-12-3, Mar. 2019.
K. Koketsu, “An Optimum Design of Thermal Energy Transducers and Power Converters for Small Form-Factor Thermoelectric Energy Harvester,” IEICE general conference, C-12-4, Mar. 2019.
Y. Tabuchi, “An Optimum Design of Micro-watt RF Energy Harvesters with RF-DC and DC-DC Conversions,” IEICE general conference, C-2-11, Mar. 2019.
Y. Yamazaki, “A Sensitivity Analysis of Power Conversion Efficiency of Rectifying Diodes on Their Device Parameters for Microwatt RF Energy Harvesting,” IEICE general conference, C-2-12, Mar. 2019.
H. Kawauchi, A system design of clocked AC-DC converter for vibration energy harvesting, IEICE society conference, C-12-9, Sep. 2018.
K. Matsuyama, Formulation of minimal delay time with pre-emphasis pulses for dense parallel RC lines, IEICE society conference, C-12-5, Sep. 2018.

2017
H. Kawauchi, “A clocked AC-DC voltage multiplier for increasing the power conversion efficiency in vibration energy harvesting”, IEICE general conference, C-12-16, Mar. 2018.
Y. Kawakami, “An analysis on lower bounds of supply voltages for enhanced-swing Colpitts oscillators”, IEICE general conference, C-12-17, Mar. 2018.
S. Tokuda, “Toward a minimum-operating-voltage design of DC-DC charge pump circuits for energy harvesting”, IEICE general conference, C-12-18, Mar. 2018.
K. Matsuyama, “A closed-form expression for pre-emphasis pulses with minimal RC delay time”, IEICE general conference, C-12-35, Mar. 2018.

— あいうえお順 —

 

研究
教育

研究生



教員

教員


静岡大学工学部電気電子工学科
教授 丹沢 徹 博士(工学)
IEEE フェロー
432-8561 浜松市中区城北3-5-1
電話: 053 -478 -1085
メール: toru . tanzawa at shizuoka . ac . jp

大学教員としてのミッション:私たちの社会を背負う人物を送り出すことに貢献する
工学部教授としてのミッション:学生に電気・電子・集積・各回路工学を伝える

発表論文など
昇圧回路の研究を通じて学んだこと
————————————————–
研究
教育

研究者
教員

研究(1990-2016)


1.      
昇圧回路(スイッチとキャパシタで高電圧を発生させる回路)の回路理論の発展と最適設計の研究
2.      
半導体メモリを制御するアナログ回路の低電圧化設計の研究
3.      
高信頼性化回路設計の研究
4.      
三次元NANDの回路とデバイスの研究
5.      
エネルギー・ハーベスティングのための基本回路設計に関する研究

cf.     記念講演

戻る

 

 

 

 

発表論文など

 
プレプリントは青字のところからダウンロードできます

Books
b15a On-chip High-Voltage Generator Design: Design Methodology for Charge Pumps, 2nd edition, Springer (2015). Link
b12a On-chip High-Voltage Generator Design, Springer (2012). Link
b02a Power Aware Design Methodologies (Editors: M. Pedram and J. M. Rabaey), Kluwer Academic Publishers (2002), Low Power Memory Design (Y. Oowaki and T. Tanzawa), pp. 52-73. Link, c.f. low power circuit design for flash memories

Journal papers

p23b T. Hashimoto, H. Nekozuka, Y. Toeda, M. Otani, Y. Fukuoka, and T. Tanzawa, A −31.7 dBm Sensitivity 0.011mm2 CMOS On-Chip Rectifier for Microwave Wireless Power Transfer, Electronics, 12/6, 1400 (2023)
p23a K. Nono and T. Tanzawa, One-Dimensional Maximum Power Point Tracking Design of Switched-Capacitor Charge Pumps for Thermoelectric Energy Harvesting, Electronics, 12/5, 1203 (2023)
p22e A. Ballo, A. D. Grasso, G. Palumbo, T. Tanzawa, A Charge Loss Aware Advanced Model of Dickson Voltage Multipliers, IEEE Access, Nov. 2022.
p22d T. Hashimoto and T. Tanzawa, Design Space Exploration of Antenna Impedance and On-Chip Rectifier for Microwave Wireless Power Transfer, Electronics, 11/19, 3218 (2022)
p22c T. Nomura and T. Tanzawa, More Enhanced Swing Colpitts Oscillators: A Circuit Analysis, Electronics, 11/18, 2808 (2022)
p22b J. Kondo and T. Tanzawa, Pre-Emphasis Pulse Design for Reducing Bit-Line Access Time in NAND Flash Memory, Electronics 11/13 1926 (2022)
p22a Y. Demura and T. Tanzawa, Design of Switched-Capacitor DC-DC Voltage-Down Converters Driven by Highly Resistive Energy Transducer, Electronics 11/12, 1874 (2022)
p21f
Y. Tone and T. Tanzawa, “An Optimum Structure of Scalable Capacitors in 3D Crosspoint Memory Technology”, Electronics 2021, 10(22), 2755; https://doi.org/10.3390/electronics10222755.
p21e
Y. Sugiura and T. Tanzawa, “Pre-Emphasis Pulse Design for Random-Access Memory,” Electronics 2021, 10(12), 1454; doi: 10.3390/electronics10121454
p21d K. Koketsu and T. Tanzawa, “Design of a Charge Pump Circuit and System with Input Impedance Modulation for a Flexible-Type Thermoelectric Generator with High-Output Impedance,” Electronics 2021, 10(10), 1212; doi: 10.3390/electronics10101212
p21c Y. Ishida, T. Tanzawa, “A Fully Integrated AC-DC Converter in 1 V CMOS for Electrostatic Vibration Energy Transducer with an Open Circuit Voltage of 10 V,” Electronics 2021, 10(10), 1185; DOI: 10.3390/electronics10101185
p21b  A. Ballo, A. D. Grasso, G. Palumbo, T. Tanzawa, “Charge Pumps for Ultra-Low-Power Applications: Analysis, Design and New Solutions,” IEEE Transactions on Circuits and Systems II: Express Briefs ( Early Access ), Apr. 2021. DOI: 10.1109/TCSII.2021.3070889
p20a “Linear distribution of capacitance in Dickson charge pumps to reduce rise time, ” International Journal of Circuit Theory & Applications, Jan. 2020.
p18b On the Output Impedance and an Output Current – Power Efficiency Relationship of Dickson Charge Pump Circuits, IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 65, No. 11, pp. 1664-7, 2018. (DOI: 10.1109/TCSII.2017.2764023).
p18a Design Considerations on Power, Performance, Reliability and Yield in 3D NAND Technology, IEICE Transactions on Electronics, vol.E101-C, no.1, pp.78-81, Jan. 2018. (DOI: 10.1587/transele.E101.C.78)
p17a An Analytical Model of Charge Pump DC-DC Voltage Multiplier Using Diodes, T. Tanzawa, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, vol. E-100-A, No. 5, pp. 1137-1144, May 2017.
p16d Innovation of Switched-Capacitor Voltage Multiplier: Part 3: State of the Art of Switching Circuits and Applications of Charge Pumps, T. Tanzawa, IEEE Solid-State Circuits Magazine, vol. 8, No. 3, pp. 63-73, Aug. (2016).
p16c Innovation of Switched-Capacitor Voltage Multiplier: Part 2: Fundamentals of the charge pump, T. Tanzawa, IEEE Solid-State Circuits Magazine, vol. 8, No. 2, pp. 83-92, Jun. (2016).
p16b Innovation of Switched-Capacitor Voltage Multiplier: Part 1: A Brief History, T. Tanzawa, IEEE Solid-State Circuits Magazine, vol. 8, No. 1, pp. 51-59, Jan. (2016).
p16a An Analytical Model of AC-DC Charge Pump Voltage Multipliers, T. Tanzawa, IEICE Transactions on Electronics, Vol. E99-C, No.1, pp. 108-118, Jan. (2016)
p14a An Optimum Design for Integrated Switched-Capacitor Dickson Charge Pump Multipliers with Area Power Balance, T. Tanzawa, IEEE Transactions on Power Electronics, pp. 534 – 538, Vol. 29, No. 2, (2014).
p12a A Behavior Model of an On-Chip High Voltage Generator for Fast, System-Level Simulation, T. Tanzawa, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 2351-2355, Vol. 20, No. 12, (2012).
p11b A Switch-Resistance-Aware Dickson Charge Pump Model for Optimizing Clock Frequency, T. Tanzawa, IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 58, No. 6, pp. 336 – 340, (2011).
p11a A Program Disturb Model and Channel Leakage Current Study for Sub-20 nm nand Flash Cells, A. Torsi, Z. Yijie, H. Liu, T. Tanzawa, A. Goda, P. Kalavade, K. Parat, IEEE Transactions on Electron Devices, Vol. 58, No. 1, pp. 11 – 16, (2011).
p10b On Two-Phase Switched-Capacitor Multipliers With Minimum Circuit Area, T. Tanzawa, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 57, No. 10, pp. 2602 – 2608, (2010).
p10a A Behavior Model of a Dickson Charge Pump Circuit for Designing a Multiple Charge Pump System Distributed in LSIs, T. Tanzawa, IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 57, No. 7, pp. 527 – 530, (2010).
p05a A 2.4-GHz Temperature-Compensated CMOS LC-VCO for Low Frequency Drift Low-Power Direct-Modulation GFSK Transmitters, T. Tanzawa, K. Agawa. H. Shibayama. R. Terauchi. K. Hisano. H. Ishikuro. S. Kousai. H. Kobayashi, H. Majima, T. Takayama, M. Koizumi, F. Hatori, IEICE Transactions on Electronics, Vol. E88-C, No.4, pp.490-495, Apr. (2005).
p02c High-voltage transistor scaling circuit techniques for high-density negative-gate channel-erasing NOR flash memories, T. Tanzawa, Y. Takano, K. Watanabe, S. Atsumi, IEEE Journal of Solid-State Circuits, Vol. 37, No. 10, pp. 1318 – 1325, (2002).
p02b A 44-mm2 four-bank eight-word page-read 64-Mb flash memory with flexible block redundancy and fast accurate word-line voltage controller, T. Tanzawa, A. Umezawa, T. Taura, H. Shiga, T. Hara, Y. Takano, T. Miyaba, N. Tokiwa, K. Watanabe, H. Watanabe, K. Masuda, K. Naruke, H. Kato, S. Atsumi, IEEE Journal of Solid-State Circuits, Vol. 37, No. 11, pp. 1485 – 1492, (2002).
p02a Circuit techniques for a 1.8-V-only NAND flash memory, T. Tanzawa, T. Tanaka, K. Takeuchi, H. Nakamura, IEEE Journal of Solid-State Circuits, Vol. 37, No. 1, pp. 84 – 89, (2002).
p01a Wordline voltage generating system for low-power low-voltage flash memories, T. Tanzawa, A. Umezawa, M. Kuriyama, T. Taura, H. Banba, T. Miyaba, H. Shiga, Y. Takano, S. Atsumi, IEEE Journal of Solid-State Circuits, Vol. 36, No. 1, pp. 55 – 63, (2001).
p00b A channel-erasing 1.8-V-only 32-Mb NOR flash EEPROM with a bitline direct sensing scheme, S. Atsumi, A. Umezawa, T. Tanzawa, T. Taura, H. Shiga, Y. Takano, T. Miyaba, M. Matsui, H. Watanabe, K. Isobe, S. Kitamura, S. Yamada, M. Saito, S. Mori, T. Watanabe, IEEE Journal of Solid-State Circuits, Vol. 35, No. 11, pp. 1648 – 1654, (2000).
p00a Design of a sense circuit for low-voltage flash memories, T. Tanzawa, Y. Takano, T. Taura, S. Atsumi, IEEE Journal of Solid-State Circuits, Vol. 35, No. 10, pp. 1415 – 1421, (2000).
p99b Optimization of word-line booster circuits for low-voltage flash memories, T. Tanzawa, S. Atsumi, IEEE Journal of Solid-State Circuits, Vol. 34, No. 8, pp. 1091 – 1098, (1999).
p99a A CMOS bandgap reference circuit with sub-1-V operation, H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, K. Sakui, IEEE Journal of Solid-State Circuits, Vol. 34, No. 5, pp. 670 – 674, (1999).
p98a A multipage cell architecture for high-speed programming multilevel NAND flash memories, K. Takeuchi, T. Tanaka, T. Tanzawa, IEEE Journal of Solid-State Circuits, Vol. 33, No. 8, pp. 1228 – 1238, (1998).
p97c A dynamic analysis of the Dickson charge pump circuit, T. Tanzawa, T. Tanaka, IEEE Journal of Solid-State Circuits, Vol. 32, No. 8, pp. 1231 – 1240, (1997).
p97b A stable programming pulse generator for single power supply flash memories, T. Tanzawa, T. Tanaka, IEEE Journal of Solid-State Circuits, Vol. 32, No. 6, pp. 845 – 851, (1997).
p97a A compact on-chip ECC for low cost flash memories, T. Tanzawa, T. Tanaka, K. Takeuchi, R. Shirota, S. Aritome, H. Watanabe, G. Hemink, K. Shimizu, S.  Sato, Y. Takeuchi, K. Ohuchi, IEEE Journal of Solid-State Circuits, Vol. 32, No. 5, pp. 662 – 669, (1997).
p92b Quantum Mechanics of a Particle on a Curved Surface Comparison of Three Different Approaches, M. Ikegami, Y. Nagaoka, S. Takagi and T. Tanzawa, Prog. Theor. Phys., Vol. 88, No. 2, pp. 229-249, (1992).
p92a Quantum Mechanics of a Particle Confined to a Twisted Ring, S. Takagi and T. Tanzawa, Prog. Theor. Phys., Vol. 87, No. 3, pp. 561-568, (1992).

Conference papers

S. Tanabe, Evaluation of DC/DC converter for hybrid power supply of thermoelectric generator and battery, C-12-2, Sep. 2022 (In Japanese)
The Origin of the Output Resistance in subthreshold Operation CMOS Latch-type RF-DC Charge Pump Circuits, T. Kotsubo, C-12-3, Sep. 2022 (In Japanese)
Proposal of a Design Flow for Minimum Input-Power Rectenna Having Antenna and On-Chip Rectifier, T. Hashimoto, C-12-4, Sep. 2022 (In Japanese)
Dependence of Boosting time of Fast Boost Converters on Variation in Parasitic Resistance of Inductor and Switching MOSFETs, Y. Kanayama, C-12-5, Sep. 2022 (In Japanese)
T. Hashimoto, Antenna/On-Chip-Rectifier Co-Design Methodology for Micro-Watt Microwave Wireless Power Transfer, 65th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2022).
J. Kondo, Pre-emphasis pulse design for ABL sensing of NAND, IEICE general conference, C-12-8, Mar. 2022. (In Japanese)
Y. Kanayama, Ramp-up performance limit of boost converters, IEICE general conference, C-12-23, Mar. 2022. (In Japanese)
R. Kotsubo, Modeling of Latched RF-DC Converters, IEICE general conference, C-12-19, Mar. 2022. (In Japanese)
Y. Kotoya, Regulator design for resonator-oscillator-rectifier booster, IEICE general conference, C-12-22, Mar. 2022. (In Japanese)
S. Tanabe, Modeling of Buck converter for TEG-Battery hybrid system, IEICE general conference, C-12-20, Mar. 2022. (In Japanese)
Y. Demura, Design of switched-capacitor DC-DC converters driven by transducers with high output impedance, IEICE general conference, C-12-21, Mar. 2022. (In Japanese) 
c21i
K. Nono, T. Tanzawa, “A Design of Charge Pump System with Maximum Power Point Tracking for Low Cost Thermoelectric Energy Harvesting,” IEICE society conf., C-12-3, Sep. 2021. (In Japanese)
c21h T. Hashimoto, T. Tanzawa, “An Optimum Design of Antenna and On-chip Rectifier for Micro-watt Microwave Wireless Power Transfer,” IEICE society conf., C-2-19, Sep. 2021. (In Japanese)
c21g H. Makino, T. Tanzawa, “A Low Power Design for NAND Flash with 1.2V I/O Power Supply,” IEICE society conf., C-12-21, Sep. 2021. (In Japanese)
c21f Y. Sakamoto, T. Tanzawa, “A Design of DC-DC Converter for Thermoelectric Energy Harvesting with Battery Backup,” IEICE society conf., C-12-1, Sep. 2021. (In Japanese)
c21e Y. Ishida, T. Tanzawa, “Design of interface circuits fabricated in 1V CMOS for electrostatic energy transducer with an open circuit voltage over 10V,” IEICE Technical Committee Conference on Integrated Circuits and Devices, Aug. 2021. (In Japanese)
c20h Y. Sakamoto and T. Tanzawa, “An Experimental Study of Power Converter System with Battery and Thermoelectric Energy Transducer Connected in Series,” IEICE society conf., C-12-9, Sep. 2020.
c20g Y. Ishida and T. Tanzawa, “A process- and temperature- tolerant fully integrated shunt regulator,” IEICE society conf., C-12-8, Sep. 2020.
c20f Y. Tabuchi and T. Tanzawa, “Mapping of Optimum Circuit Topology for Micro-Watt Rectenna in Output Voltage-Current Plane,” IEICE society conf., C-2-11, Sep. 2020.
c20e K. Koketsu and T. Tanzawa, “A Control Circuit Design of Power Converter with Time-Division Input Impedance Modulation for Energy Transducer with High Output Impedance,” IEICE Technical Committee Conference on Integrated Circuits and Devices, Aug. 2020. (In Japanese)
c20d Y. Sakamoto and T. Tanzawa, “A Power Converter System for Energy Harvesting Toward Zero Net Battery Power,” IEICE general conference, Mar. 2020.
c20c Y. Sugiura and T. Tanzawa, “An Optimum Pre-Emphasis Pulse Design for Random Access Memory,” IEICE general conference, Mar. 2020.
c20b T. Nomura and T. Tanzawa, “A Double Resonant Enhanced Swing Colpitts Oscillator for Extremely Low-Voltage DC/DC Boost Conversion,” IEICE general conference, Mar. 2020.
c20a J. Ye and T. Tanzawa, “An Optimum Circuit Design of clocked AC-DC charge pumps,” IEICE general conference, , Mar. 2020.
c19g Y. Yamazaki, “A Design Window for Device Parameters of Rectifying Diodes in 2.4 GHz Micro-watt RF Energy Harvesting,” IEEE APMC, Dec. 2019.
c19f Design of Pre-Emphasis Pulses for Large Memory Arrays with Minimal Word-Line Delay Time, K. Matsuyama and T. Tanzawa, IEEE ISCAS, B1L-H-4, May 2019.
c19e Toward a minimum-operating-voltage design of DC-DC charge pump circuits for energy harvesting, S. Tokuda and T. Tanzawa, IEEE ISCAS, C5L-K-5, May 2019.
c19d A Design of AC-DC Converters Fully Integrated in Standard CMOS for Electrostatic Vibration Energy Harvesting, Y. Ishida and T. Tanzawa, IEICE general conference, C-12-3, Mar. 2019.
c19c An Optimum Design of Thermal Energy Transducers and Power Converters for Small Form-Factor Thermoelectric Energy Harvester, K. Koketsu and T. Tanzawa, IEICE general conference, C-12-4, Mar. 2019.
c19b An Optimum Design of Micro-watt RF Energy Harvesters with RF-DC and DC-DC Conversions, Y. Tabuchi and T. Tanzawa, IEICE general conference, C-2-11, Mar. 2019.
c19a A Sensitivity Analysis of Power Conversion Efficiency of Rectifying Diodes on Their Device Parameters for Microwatt RF Energy Harvesting, Y. Yamazaki and T. Tanzawa, IEICE general conference, C-2-12, Mar. 2019.
c18g (Invited) Interface Circuit Design for Energy Harvesting: State of the Art and Challenges, T. Tanzawa, IEICE society conference, CI-3-1, Sep. 2018.
c18f A system design of clocked AC-DC converter for vibration energy harvesting, H. Kawauchi and T. Tanzawa, IEICE society conference, C-12-9, Sep. 2018.
c18e Formulation of minimal delay time with pre-emphasis pulses for dense parallel RC lines, K. Matsuyama and T. Tanzawa, IEICE society conference, C-12-5, Sep. 2018.
c18d A clocked AC-DC voltage multiplier for increasing the power conversion efficiency in vibration energy harvesting, H. Kawauchi and T. Tanzawa, IEICE general conference, C-12-16, Mar. 2018.
c18c An analysis on lower bounds of supply voltages for enhanced-swing Colpitts oscillators, Y. Kawakami and T. Tanzawa, IEICE general conference, C-12-17, Mar. 2018.
c18b Toward a minimum-operating-voltage design of DC-DC charge pump circuits for energy harvesting, S. Tokuda and T. Tanzawa, IEICE general conference, C-12-18, Mar. 2018.
c18a A closed-form expression for pre-emphasis pulses with minimal RC delay time, K. Matsuyama and T. Tanzawa, IEICE general conference, C-12-35, Mar. 2018.
c17a On-Chip Switched-Capacitor DC-DC Converter in Memory Technology: State of the Art and Challenges, T. Tanzawa, IEEE ECCTD (European Conference on Circuit Theory and Design), Sep. 2017.
c16a Design Challenge in 3D NAND Technology: a 4.8X Area- and 1.3X Power-Efficient 20V Charge Pump Using Tier Capacitors, T. Tanzawa, T. Murakoshi, T. Kamijo, T. Tanaka, J. McNeil, K. Duesman, IEEE Asian Solid-State Circuits Conference, Nov. 2016.
c15b A Comprehensive Optimization Methodology for Designing Charge Pump Voltage Multipliers, T. Tanzawa, IEEE International Conference on Circuits and Systems, pp. 1358-1361, May 2015.
c15a An Analytical Model of Multi-Sine AC-DC Voltage Multiplier, T. Tanzawa, IEEE International Conference on Circuits and Systems, pp. 1354-1357, May 2015.
c14b An Analytical Model of AC-DC Voltage Multipliers, T. Tanzawa, IEEE International Conference on Electronics Circuits and Systems, pp. 323-326, Dec. 2014.
c14a Design of DC-DC Switched-Capacitor Voltage Multiplier driven by DC Energy Transducer, T. Tanzawa, IEEE International Conference on Electronics Circuits and Systems, pp. 327-330, Dec. 2014.
c10b A temperature compensation word-line voltage generator for multi-level cell NAND Flash memories, T. Tanzawa, T. Tanaka, S. Tamada, J. Kishimoto, S. Yamada, K. Kawai, T. Ichikawa, P. Chiang, F. Roohparvar, ESSCIRC, pp. 106 – 109, 2010
c10a NBTI stress relaxation design for scaling high-voltage transistors in NAND Flash memories, T. Tanzawa, IEEE International Memory Workshop (IMW), pp. 1 – 2, 2010.
c09b Dickson charge pump circuit design with parasitic resistance in power lines, T. Tanzawa, ISCAS, pp. 1763 – 1766, 2009. c
09a
A 172mm2 32Gb MLC NAND flash memory in 34nm CMOS, R. Zeng, N. Chalagalla, D. Chu, D. Elmhurst, M. Goldman, C. Haid, A. Huq, T. Ichikawa, J. Jorgensen, O. Jungroth, N. Kajla, R. Kajley, K. Kawai, J. Kishimoto, A. Madraswala, T. Manabe, V. Mehta, M. Morooka, K. Nguyen, Y. Oikawa, B. Pathak, R. Rozman, T. Ryan, A. Sendrowski, W. Sheung, Szwarc, Y. Takashima, S. Tamada, T. Tanzawa, T. Tanaka, M. Taub, D. Udeshi, S. Yamada, H. Yokoyama, IEEE International Solid-State Circuits Conference, pp. 236 – 237, 2009
c08a A process- and temperature-tolerant power-on reset circuit with a flexible detection level higher than the bandgap voltage, T. Tanzawa, ISCAS, pp. 2302 – 2305, 2008
c05a A low-IF CMOS single-chip Bluetooth EDR transmitter with digital I/Q mismatch trimming circuit, D. Miyashita, H. Ishikuro, T. Shimada, T. Tanzawa, S. Kousai, H. Kobayashi, H. Majima, K. Agawa, M. Hamada, F. Hatori, Digest of Technical Papers, Symposium on VLSI Circuits, pp. 298 – 301, 2005
c04a A temperature-compensated CMOS LC-VCO enabling the direct modulation architecture in 2.4GHz GFSK transmitter, T. Tanzawa, H. Shibayama, R. Terauchi, K. Hisano, H. Ishikuro, S. Kousai, H. Kobayashi, H. Majima, T. Takayama, K. Agawa, M. Koizumi, F. Hatori, Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 273 – 276, 2004
c02a A 44mm2 4-bank 8-word page read 64Mb flash memory with flexible block redundancy and fast accurate word-line voltage controller, T. Tanzawa, A. Umezawa, T. Taura, H. Shiga, T. Hara, Y. Takano, T. Miyaba, N. Tokiwa, K. Watanabe, H. Watanabe, K. Masuda, K. Naruke, H. Kato, S. Atsumi, ISSCC, pp. 78 – 409, 2002
c00a A channel-erasing 1.8 V-only 32 Mb NOR flash EEPROM with a bit-line direct-sensing scheme, S. Ataumi, A. Umezawa, T. Tanzawa, T. Taura, H. Shiga, Y. Takano, T. Miyaba, M. Matsui, H. Watanabe, K. Isobe, S. Kitamura, S. Yamada, M. Saito, S. Mori, T. Watanabe, Digest of Technical Papers. IEEE International Solid-State Circuits Conference, pp. 276 – 277, 2000.
c99a A sampling weak-program method to tighten Vth-distribution of 0.5 V for low-voltage flash memories, H. Shiga, T. Tanzawa, A. Umezawa, T. Taura, T. Miyaba, M. Saito, S. Kitamura, S. Mori, S. Atsumi, Digest of Technical Papers. Symposium on VLSI Circuits, pp. 33 – 36, 1999.
c98b Novel 0.44 μm2 Ti-salicide STI cell technology for high-density NOR flash memories and high performance embedded application, H. Watanabe, S. Yamada, M. Tanimoto, M. Matsui, S. Kitamura, K. Amemiya, T. Tanzawa, E. Sakagami, M. Kurata, K. Isobe, M. Takebuchi, M. Kanda, S. Mori, T. Watanabe, Technical Digest, International Electron Devices Meeting, pp. 975 – 978, 1998.
c98a A CMOS band-gap reference circuit with sub 1 V operation, H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, K. Sakui, Digest of Technical Papers, Symposium on VLSI Circuits, pp. 228 – 229, 1998.
c97d A novel isolation-scaling technology for NAND EEPROMs with the minimized program disturbance, S. Satoh, H. Hagiwara, T. Tanzawa, K. Takeuchi, R. Shirota, IEEE IEDM, pp. 291-294, Dec. 1997.
c97a Circuit Technologies For A Single-1.8V Flash Memory, T. Tanzawa, T. Tanaka, K. Takeuchi, H. Nakamura, Digest of Technical Papers, Symposium on VLSI Circuits, pp. 63 – 64, 1997.
c97b A Multi-page Cell Architecture For High-speed Programming Multi-level NAND Flash Memories, K. Takeuchi, T. Tanaka, T. Tanzawa, Digest of Technical Papers, Symposium on VLSI Circuits, pp. 67 – 68, 1997.
c97a A 3.4-Mbyte/sec Programming 3-level NAND Flash Memory Saving 40% Die Size Per Bit, T. Tanaka, T. Tanzawa, K. Takeuchi, Digest of Technical Papers, Symposium on VLSI Circuits, pp. 65 – 66, 1997.
c96a A compact on-chip ECC for low cost flash memories, T. Tanzawa, T. Tanaka, K. Takeuchi, R. Shirota, S. Aritome, H. Watanabe, G. Hemink, K. Shimizu, S. Sato, Y. Takeuchi, K. Ohuchi, Symposium on VLSI Circuits, pp. 74 – 75, 1996.
c95a A stable programming pulse generator for high-speed programming single power supply voltage flash memories, T. Tanzawa, T. Tanaka, Symposium on VLSI Circuits, pp. 73 – 74, 1995.
c94a A Quick Boosting Charge Pump Circuit for High Density and Low Voltage Flash Memories, T. Tanzawa, Y. Tanaka, T. Tanaka, N. Nakamura, H. Oodaira, K. Sakui, M. Momodomi, S. Shiratake, H. Nakano, Y. Oowaki, S. Watanabe, K. Ohuchi, F. Masuoka, Symposium on VLSI Circuits, pp. 65 – 66, 1994.

Lecture
l17a [Memorial lecture] “What I have learned through research and development on integrated charge pump circuits”, T. Tanzawa, IEICE technical report, CAS2016-96, ICTSSL2016-50, Jan. 2017
l14a “On-chip High-Voltage Charge Pump Design”, ESSCIRC Tutorial, Sep., 2014.
l12a 1st, 2nd, 3rd “On-chip High-voltage Generator Design”, ISCAS Tutorial, May 2012.

Patents
[1]. レクテナ装置及びレクテナ装置を設計する方法 [出願番号] 特願2019-169281 (2019年9月18日)
[2]. インピーダンス調整回路、電力変換素子及び電源素子 [出願番号] PCT/JP2019/016863 (2019年4月19日)
[3]. 電力変換装置及び電源装置 [出願番号] PCT/JP2018/045295 (2018年12月10日)
[4]. 駆動回路及び電子デバイス [出願番号] 特願2018-217136 (2018年11月20日)
[5]. 半導体装置及びその製造方法 [出願番号] PCT/JP2018/031369 (2018年8月24日)
[備考] 公開番号:WO2019/044705, 公開日:2019年3月7日
[6]. 電力変換回路及び電源装置 [出願番号] 特願2018-109038 (2018年5月21日)
[7]. インピーダンス調整回路、電力変換素子及び電源素子 [出願番号] 特願2018-81478 (2018年4月20日)
[8]. 電力変換装置及び電源装置 [出願番号] 特願2017-246692 (2017年12月22日)
[9]. 半導体装置及びその製造方法 [出願番号] 特願2017-168814 (2017年9月1日)
Total: 250 US granted patents Link and 61 Japan granted patents in total as of Sep. 2019.

戻る

 

Researchers

2023

Tanabe, S.; Tanzawa, T. Battery-Assisted Battery Charger with Maximum Power Point Tracking for Thermoelectric Generator: Concept and Experimental Proof. Electronics 2023, 12, 4102.
S. Tanabe, Y. Sakamoto, H. Uchida, T. Tanzawa, “A Hybrid Thermoelectric Generator – Battery Power Supply System Toward Replacement-Free Battery”, IEEE 11th International Conference on Power Electronics – ECCE Asia, pp. 1817 – 1822, May 2023.

2022


T. Hashimoto, A −31.7 dBm Sensitivity 0.011 mm2 CMOS On-Chip Rectifier for Microwave Wireless Power Transfer, Electronics , 12(6), 1400 (2023)
K. Nono, One-Dimensional Maximum Power Point Tracking Design of Switched-Capacitor Charge Pumps for Thermoelectric Energy Harvesting, Electronics, 12(5), 1203, 2023.
H. Makino, A 30% Power Reduction Circuit Design for NAND Flash by Utilizing 1.2V I/O Power Supply to Bitline Path, IEEE the 18th Asia Pacific Conference on Circuits and Systems (APCCAS), Nov. 2022.
T. Hashimoto, Design Space Exploration of Antenna Impedance and On-Chip Rectifier for Microwave Wireless Power Transfer, Electronics , 11/19, 3218 (2022)
T. Nomura, More Enhanced Swing Colpitts Oscillators: A Circuit Analysis, Electronics , 11/18, 2808 (2022)
T. Hashimoto, Antenna/On-Chip-Rectifier Co-Design Methodology for Micro-Watt Microwave Wireless Power Transfer, 65th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2022).
J. Kondo, Pre-Emphasis Pulse Design for Reducing Bit-Line Access Time in NAND Flash Memory, Electronics 11/13 1926 (2022)
Y. Demura, Design of Switched-Capacitor DC-DC Voltage-Down Converters Driven by Highly Resistive Energy Transducer, Electronics 11/12, 1874 (2022)

2021

J. Kondo, Pre-emphasis pulse design for ABL sensing of NAND, IEICE general conference, C-12-8, Mar. 2022. (In Japanese)
Y. Kanayama, Ramp-up performance limit of boost converters, IEICE general conference, C-12-23, Mar. 2022. (In Japanese)
R. Kotsubo, Modeling of Latched RF-DC Converters, IEICE general conference, C-12-19, Mar. 2022. (In Japanese)
Y. Kotoya, Regulator design for resonator-oscillator-rectifier booster, IEICE general conference, C-12-22, Mar. 2022. (In Japanese)
S. Tanabe, Modeling of Buck converter for TEG-Battery hybrid system, IEICE general conference, C-12-20, Mar. 2022. (In Japanese)
Y. Demura, Design of switched-capacitor DC-DC converters driven by transducers with high output impedance, IEICE general conference, C-12-21, Mar. 2022. (In Japanese)
Y. Tone, “An Optimum Structure of Scalable Capacitors in 3D Crosspoint Memory Technology”, Electronics 2021, 10(22), 2755; https://doi.org/10.3390/electronics10222755.
K. Nono, A Design of Charge Pump System with Maximum Power Point Tracking for Low Cost Thermoelectric Energy Harvesting, IEICE society conf., C-12-3, Sep. 2021. (In Japanese)
T. Hashimoto, An Optimum Design of Antenna and On-chip Rectifier for Micro-watt Microwave Wireless Power Transfer, IEICE society conf., C-2-19, Sep. 2021. (In Japanese)
H. Makino, A Low Power Design for NAND Flash with 1.2V I/O Power Supply, IEICE society conf., C-12-21, Sep. 2021. (In Japanese)
Y. Sakamoto, A Design of DC-DC Converter for Thermoelectric Energy Harvesting with Battery Backup, IEICE society conf., C-12-1, Sep. 2021.
T. Nomura, Self-oscillator-based DC-DC converter
Y. Ishida, “Design of interface circuits fabricated in 1V CMOS for electrostatic energy transducer with an open circuit voltage over 10V,” IEICE Technical Committee Conference on Integrated Circuits and Devices, Aug. 2021. (In Japanese)

Y. Sugiura, “Pre-Emphasis Pulse Design for Random-Access Memory,” Electronics 2021, 10(12), 1454; doi: 10.3390/electronics10121454
K. Koketsu, “Design of a Charge Pump Circuit and System with Input Impedance Modulation for a Flexible-Type Thermoelectric Generator with High-Output Impedance,” Electronics 2021, 10(10), 1212; doi: 10.3390/electronics10101212
Y. Ishida, “A Fully Integrated AC-DC Converter in 1 V CMOS for Electrostatic Vibration Energy Transducer with an Open Circuit Voltage of 10 V,” Electronics 2021, 10(10), 1185; DOI: 10.3390/electronics10101185
K. Matsuyama, “A Circuit Analysis of Pre-Emphasis Pulses for RC Delay Lines,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E104-A, No. 6, pp. 912-926, Jun. 2021.

2020
Y. Tone, “A Design Guideline of Scalable Capacitors in 3D Cross-Point Memory”, IEICE general conference, C-12-31, Mar. 2021.
K. Nono, “A Design of Adaptive Charge Pumps with Minimum Circuit Area for Thermoelectric Energy Harvesting under Temperature Variations”, IEICE general conference, C-12-27, Mar. 2021.
T. Hashimoto, “A Study on the Fundamental Limit of Integrated Rectifiers for Low Cost Microwave Wireless Power Transfer”, IEICE general conference, C-2-6, Mar. 2021.
H. Makino, “A Study of Sensing Schemes for NAND Flash: Shielded Bit-Line vs. All Bit-Line”, IEICE general conference, C-12-32, Mar. 2021.
H. Kawauchi, “A Fully Integrated Clocked AC-DC Charge Pump for Magnetostrictive Vibration Energy Harvesting”, Electronics, 9(12), pp. 2194, 2020. doi:10.3390/electronics9122194.
J. Ye, “An Optimum Design of Clocked AC-DC Charge Pump Circuits for Vibration Energy Harvesting,” Electronics, 9(12), pp. 2031, 2020. doi.org/10.3390/electronics9122031.
Y. Sakamoto, “An Experimental Study of Power Converter System with Battery and Thermoelectric Energy Transducer Connected in Series,” IEICE society conf., C-12-9, Sep. 2020.
T. Nomura, “An optimum design of self-oscillator-based DC-DC converter”
K. Koketsu, “A Design of Cold Start Charge Pump for Flexible Thermoelectric Generator with High Output Impedance,” IEEE ICECS, Nov. 2020.
Y. Tabuchi, “Rectenna with Serially Connected Diodes for Micro-watt Energy Harvesting,” WPTC, Nov. 2020.
Y. Ishida, “A process- and temperature- tolerant fully integrated shunt regulator,” IEICE society conf., C-12-8, Sep. 2020.
K. Koketsu, “A Control Circuit Design of Power Converter with Time-Division Input Impedance Modulation for Energy Transducer with High Output Impedance,” IEICE Technical Committee Conference on Integrated Circuits and Devices, Aug. 2020. (In Japanese)
Y. Tabuchi, “Mapping of Optimum Circuit Topology for Micro-Watt Rectenna in Output Voltage-Current Plane,” IEICE society conf., C-2-11, Sep. 2020.
2019
A. Ballo, “Linear distribution of capacitance in Dickson charge pumps to reduce rise time,” International Journal of Circuit Theory & Applications, Jan. 2020. Link
Y. Sakamoto, “A Power Converter System for Energy Harvesting Toward Zero Net Battery Power,” IEICE general conference, C-12-20, Mar. 2020.
Y. Sugiura, Pre-Emphasis Pulse Design for Random Access Memory, IEICE general conference, C-12-12, Mar. 2020.
T. Nomura, “A Double Resonant Enhanced Swing Colpitts Oscillator for Extremely Low-Voltage DC/DC Boost Conversion,” IEICE general conference,  C-12-18, Mar. 2020.
J. Ye, “An Optimum Circuit Design of clocked AC-DC charge pumps,” IEICE general conference, C-12-19, Mar. 2020.
Y. Ishida, AC-DC converter design for electrostatic vibration energy harvesting
K. Koketsu, DC-DC converter design for thermoelectric generator
Y. Tabuchi, Rectenna design for wireless power transmission
Y. Yamazaki, “A Design Window for Device Parameters of Rectifying Diodes in 2.4 GHz Micro-watt RF Energy Harvesting,” IEEE APMC, Dec. 2019.
H. Kawauchi, “A 2V 3.8μW Fully-Integrated Clocked AC-DC Charge Pump with 0.5V 500Ω Vibration Energy Harvester,” IEEE APCCAS, 5098, Nov. 2019.
K. Matsuyama, “A Pre-Emphasis Pulse Generator Insensitive to Process Variation for Driving Large Memory and Panel Display Arrays with Minimal Delay Time,” IEEE APCCAS, 5097, Nov. 2019.
K. Matsuyama, “Design of Pre-Emphasis Pulses for Large Memory Arrays with Minimal Word-Line Delay Time”, IEEE ISCAS, B1L-H-4, May 2019.
S. Tokuda, “Toward a minimum-operating-voltage design of DC-DC charge pump circuits for energy harvesting”, IEEE ISCAS, C5L-K-5, May 2019.

2018
Y. Ishida, “A Design of AC-DC Converters Fully Integrated in Standard CMOS for Electrostatic Vibration Energy Harvesting,” IEICE general conference, C-12-3, Mar. 2019.
K. Koketsu, “An Optimum Design of Thermal Energy Transducers and Power Converters for Small Form-Factor Thermoelectric Energy Harvester,” IEICE general conference, C-12-4, Mar. 2019.
Y. Tabuchi, “An Optimum Design of Micro-watt RF Energy Harvesters with RF-DC and DC-DC Conversions,” IEICE general conference, C-2-11, Mar. 2019.
Y. Yamazaki, “A Sensitivity Analysis of Power Conversion Efficiency of Rectifying Diodes on Their Device Parameters for Microwatt RF Energy Harvesting,” IEICE general conference, C-2-12, Mar. 2019.
H. Kawauchi, A system design of clocked AC-DC converter for vibration energy harvesting, IEICE society conference, C-12-9, Sep. 2018.
K. Matsuyama, Formulation of minimal delay time with pre-emphasis pulses for dense parallel RC lines, IEICE society conference, C-12-5, Sep. 2018.

2017
H. Kawauchi, “A clocked AC-DC voltage multiplier for increasing the power conversion efficiency in vibration energy harvesting”, IEICE general conference, C-12-16, Mar. 2018.
Y. Kawakami, “An analysis on lower bounds of supply voltages for enhanced-swing Colpitts oscillators”, IEICE general conference, C-12-17, Mar. 2018.
S. Tokuda, “Toward a minimum-operating-voltage design of DC-DC charge pump circuits for energy harvesting”, IEICE general conference, C-12-18, Mar. 2018.
K. Matsuyama, “A closed-form expression for pre-emphasis pulses with minimal RC delay time”, IEICE general conference, C-12-35, Mar. 2018.

 

—- in aiueo order —

Research
Education

Researchers
Instructor

 

 

 

 

 

Instructor



Prof. Toru Tanzawa, Ph.D, IEEE Fellow
Faculty of engineering, Shizuoka university

Address: 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
Phone: + 81 -53 -478 -1085
Email: toru . tanzawa at shizuoka . ac . jp

Mission as an academic: for a student to become a member of our society
Mission as a member of the faculty of engineering: for a student to understand electrical, electronic and integrated circuit engineering

    Toru Tanzawa received the B.S. degree in physics from Saitama University, Saitama, Japan, in 1990, the M.S. degree in physics from Tohoku University, Sendai, Japan, in 1992, and the Ph.D. degree in electrical engineering from The University of Tokyo, Tokyo, Japan, in 2002.
    In 1992, he joined the Toshiba Research and Development Center, Japan. He had worked on the circuit design of high-density NAND Flash memories and high-speed low-voltage NOR Flash memories for ten years and on the circuit design of RF-CMOS wireless LSIs for Bluetooth for the following three years. From 2004 to 2017, he was with Micron Memory Japan, Inc., Tokyo, where he has worked on MLC/3D NAND Flash design at the Japan Flash Design Center. He is a professor with Faculty of Engineering, Shizuoka University.
    Dr. Tanzawa holds 250+ U.S. patents and has published 60+ papers in IEEE conferences and journals. Toru Tanzawa is a Fellow of
IEEE.

Research and Publications 
Indiscreet comments
————————————————-

Research
Education

Researchers
Instructor

 

Research (1990-2016)


1.     
Evolution of circuit theory and design optimization of charge pump circuits and switched-capacitor voltage multipliers
2.
     
Low voltage circuit design of analog circuits for controlling memory operations
3.     
Circuit design for high reliability
4.
     
Design research on devices and circuits for 3D NAND
5.
     
Fundamental circuit design theory for energy harvesting
cf.   
Memorial lecture

Return